
 Advanced search

Linux Journal Issue #56/December 1998

Features

Performance Monitoring Tools for Linux by David Gavin
Article about writing up a package of tools for performance
analysis of Linux systems. It was written to make up for the lack
of SAR on Linux—includes data collection tool and two sets of
graphing systems

CIDR: A Prescription for Shortness of Address Space by David A.
Bandel

This article explains the concept of CIDR and shows you how you
can implement it on your network.

User Manager Software by Branden Williams
Mr. Williams presents a tool to handle all of your user-
administration tasks.

X Window System Administration by Jay Ts
An introduction to X structure, configuration and customization.

LJ Interviews Linus Torvalds by Marjorie Richardson
With 2.2 on the horizon, LJ once again talks to the man who
started it all—Linus Torvalds.

News & Articles

Building a Web Weather Station by Chris Howard
Mr. Howard tells us how he gathers and outputs weather
information to the Web using Linux, Perl and automated FTP.
Archive File containing listings found in this article.

Samba's Encrypted Password Support by John Blair
How SMB-encrypted passwords actually works and a walk-
through the steps required to enable encrypted passwords in
Samba.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/056/2396.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3017.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3050.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3083.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3103.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3103.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/056/2538.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/056/2717.html

X-ISP and Maintaining Multiple Account Records by Chris LeDantec
Even for the experienced administrator, X-ISP provides an easy
way to manage multiple accounts, keep track of usage expense
and time on-line.

Linux in Banking by Idan Shoham
Mr. Shoham tells us how his company set up an Internet banking
system using Linux for a bank in Western Canada.

Preventing Spams and Relays by John Wong
The smtpd package is a useful mail demon for stopping spam,
thereby saving money and resources.

Reviews

Mathematica version 3.0 for Linux by Patrick Galbraith
Review of new Maple release. Contacting Waterloo for new
version

Happy Hacking Keyboard by Jeremy Dinsel
Linux Application Development by Andrew Johnson
The Linux System Administration Handbook by David A. Bandel
Learning the Bash Shell, Second Edition by Bob van der Poel

Columns

Linux Means Business Wireless Networking in Africa by F.
Postogna, C. Fonda, E.Canessa, G. O. Ajayi, S. Radicella

The experiences of the members of an Italian project in
establishing wireless networking with Linux in Africa

Linux in Education Sharing Pedagogy with Java by Robert A.
Dalrymple
At the Forge Embperl and Databases by Reuven M. Lerner

Archive File containing listings found in this article.
Linux Apprentice Linux Security for Beginners by Alex Withers

Mr. Withers takes a look at basic security issues and how to
solve them using available tools

Take Command bc: A Handy Utility by Alasdair McAndrew
Mr. McAndrew shows us how the bc command can be used for
prototyping numerical algorithms.

Kernel Korner The Wonderful World of Linux 2.2 by Joseph
Pranevich

Mr. Pranevich gives us a look at the changes and improvements
coming out in the new kernel.

Strictly On-line

Linux System Initialization by David A. Bandel
Archive File containing listings found in this article.

Departments

Letters to the Editor
Stop the Presses by Dwight Johnson

Venture Capital Invested in Red Hat
Best of Technical Support

https://secure2.linuxjournal.com/ljarchive/LJ/056/2856.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2927.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2948.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3147.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3028.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3053.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3105.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2720.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2554.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3137.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/056/3137.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/056/3062.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2544.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3144.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3016.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/056/3016.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/056/3170.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3171.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3169.html

New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/056/3159.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Performance Monitoring Tools for Linux

David Gavin

Issue #56, December 1998

Mr. Gavin provides tools for systems data collection and display and discusses
what information is needed and why.

For the last few years, I have been supporting users on various flavors of UNIX
systems and have found the System Accounting Reports data invaluable for
performance analysis. When I began using Linux for my personal workstation,
the lack of a similar performance data collection and reporting tool set was a
real problem. It's hard to get management to upgrade your system when you
have no data to back up your claims of “I need more POWER!”. Thus, I started
looking for a package to get the information I needed, and found out there
wasn't any. I fell back on the last resort—I wrote my own, using as many
existing tools as possible. I came up with scripts that collect data and display it
graphically in an X11 window or hard copy.

What Do We Want to Know?

To get a good idea of how a system is performing, watch key system resources
over a period of time to see how their usage and availability changes
depending upon what's running on the system. The following categories of
system resources are ones I wished to track.

CPU Utilization: The central processing unit, as viewed from Linux, is always in
one of the following states:

• idle: available for work, waiting

• user: high-level functions, data movement, math, etc.

• system: performing kernel functions, I/O and other hardware interaction

• nice: like user, a job with low priority will yield the CPU to another task
with a higher priority

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

By noting the percentage of time spent in each state, we can discover
overloading of one state or another. Too much idle means nothing is being
done; too much system time indicates a need for faster I/O or additional
devices to spread the load. Each system will have its own profile when running
its workload, and by watching these numbers over time, we can determine
what's normal for that system. Once a baseline is established, we can easily
detect changes in the profile.

Interrupts: Most I/O devices use interrupts to signal the CPU when there is work
for it to do. For example, SCSI controllers will raise an interrupt to signal that a
requested disk block has been read and is available in memory. A serial port
with a mouse on it will generate an interrupt each time a button is pressed/
released or when the mouse is moved. Watching the count of each interrupt
can give you a rough idea of how much load the associated device is handling.

Context Switching: Time slicing is the term often used to describe how
computers can appear to be doing multiple jobs at once. Each task is given
control of the system for a certain “slice” of time, and when that time is up, the
system saves the state of the running process and gives control of the system
to another process, making sure that the necessary resources are available.
This administrative process is called context switching. In some operating
systems, the cost of this switching can be fairly expensive, sometimes using
more resources than the processes it is switching. Linux is very good in this
respect, but by watching the amount of this activity, you will learn to recognize
when a system has a lot of tasks actively consuming resources.

Memory: When many processes are running and using up available memory,
the system will slow down as processes get paged or swapped out to make
room for other processes to run. When the time slice is exhausted, that task
may have to be written out to the paging device to make way for the next
process. Memory-utilization graphs help point out memory problems.

Paging: As mentioned above, when available memory begins to get scarce, the
virtual memory system will start writing pages of real memory out to the swap
device, freeing up space for active processes. Disk drives are fast, but when
paging gets beyond a certain point, the system can spend all of its time
shuttling pages in and out. Paging on a Linux system can also be increased by
the loading of programs, as Linux “demand pages” each portion of an
executable as needed.

Swapping: Swapping is much like paging. However, it migrates entire process
images, consisting of many pages of memory, from real memory to the swap
devices rather than the usual page-by-page mechanism normally used for
paging.

Disk I/O: Linux keeps statistics on the first four disks; total I/O, reads, writes,
block reads and block writes. These numbers can show uneven loading of
multiple disks and show the balance of reads versus writes.

Network I/O: Network I/O can be used to diagnose problems and examine
loading of the network interface(s). The statistics show traffic in and out,
collisions, and errors encountered in both directions.

These charts can also help in the following instances:

• The system is running jobs you aren't aware of during hours when you are
not present.

• Someone is logging on or remotely running commands on the system
without your knowledge.

This sort of information will often show up as a spike in the charts at times
when the system should have been idle. Sudden increases in activity can also
be due to jobs run by crontab.

Collecting the Data

The file /proc/stat contains current counters for most of the data I wanted, and
it is in a readable format. In order to keep the collector script as quick and
simple as possible, I saved the data in a readable format rather than as binary
data.

Breaking down and reorganizing the data for storage was a good job for awk,
writing the data out to different files depending on the type of data. The /proc
files are formatted nicely for this; each record has an identifying name in the
first field. Here's a sample of /proc/stat from my 486 system:

cpu 1228835 394 629667 23922418
disk 43056 111530 0 0
disk_rio 18701 20505 0 0
disk_wio 24355 91025 0 0
disk_rblk 37408 40690 0 0
disk_wblk 48710 182050 0 0
page 94533 204827
swap 1 0
intr 27433973 25781314 58961 0 1059544 368102 1 2\
0 0 0 11133 154916 0 0 0 0
ctxt 18176677
btime 863065361
processes 18180

I dug into the kernel source for the /proc file system to figure out what the
various fields were, as the man pages seem to date back to 1.x.

• cpu: contains the following information: jiffies (1/100 of a second) spent in
user/nice/system/idle states. I wasn't too concerned about the actual

measurement, as I was just planning on looking at each state as a
percentage of the total.

• disk: summarizes all I/O to each of the four disks, while disk_rio, disk_wio,
disk_rblk and disk_wblk break down the total into read, write, blocks read
and blocks written.

• page: page in and out counters
• swap: counts of pages swapped in and out. The swap data in /proc/

meminfo is expressed as total pages, used and free. Combine both sets of
data to get a clear picture of swap activity.

• intr: total interrupts since boot time, followed by counts for each
interrupt.

• ctxt: the number of context switches since boot time. This counts the
number of times one process was “put to sleep” and another was
“awakened”.

• btime: I haven't found much use for this—it is the number of seconds
after January 1, 1970 that the system was booted.

• processes: the most recent process identification number. This is a good
way to see how many processes have been spawned since the last check,
so by subtracting the old value from the current one and dividing by the
time difference (in seconds) between the two observations, the number of
new processes per second is known and can be used to measure how
busy the system is.

Network activity counters are found in the /proc/net/dev file; an example of this
file is shown in Table 1.

The lines we want here are the ethx and pppx records. In the collector script,
the data is written out to a file using the full interface name. This way, the script
is generalized for most any configuration.

Memory utilization can be tracked in the /proc/meminfo file as shown in Table
2.

The memory counters are expressed twice in this file, so we need to save only
the Mem: and Swap: records to get the whole picture. The script matches the
keywords at the start of the line and writes the data out to individual files
rather than to one large database to allow more flexibility as new fields or data
types are added. This makes for a cluttered directory but simpler script writing.

The script that collects the data is shown in Listing 1. Here are some things that
are going on in a few key parts, plus comments:

• Line 13: move to the directory where the data is to be stored using cd.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2396t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2396t2.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2396t2.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2396l1.html

• Line 14: get the timestamp for the data records in format HHMM.
• Line 15: get the date for the output data file names in format MonDD.YY
• Lines 19 - 25: select the memory and swap counter lines from /proc/

meminfo and write the timestamp and data portion of the record to
Mem.MonDD.YY and Swap.MonDD.YY.

• Lines 29 - 36: extract the counters for any network interfaces from /proc/
net/dev and write them out to files including the interface numbers, i.e.,
eth0 data is written out to eth0.MonDD.YY.

• Lines 39 - 79: clip counters for cpu, disk, paging, swap page usage,
interrupts, context switching and process numbers from /proc/stat and
write them out to appropriate files.

The following line in my crontab file runs the collection script every five minutes
every hour of every day:

0,5,10,15,20,25,30,35,40,45,50,55 * * * *\
/var/log/sar/sa 0 0 * * * exec /usr/bin/find\
/var/log/sar/data/ -mtime +14
-exec /bin/rm -f {} \;

The data accumulates over the course of the day to provide the data points for
analysis. A cleanup script invoked by the second line removes each file after
two weeks to keep the disk space requirements down. A possible enhancement
might be to compress each file after it is complete, but space hasn't been much
of an issue yet.

What Do We Do with the Data?

I now had the data, but since columns of figures are boring, I needed a way to
look at the data and make sense of it. I had used gnuplot for similar tools on
other systems, so it seemed to be a good choice. I started with a script to
display CPU utilization, charting the percentages of time spent in idle, user,
system and nice states.

The cpu data file has five columns that look like this:

0000 4690259 69915 661038 7937582
0005 4690408 69964 661286 7966975

Column 1: seconds in idle state since last bootedColumn 2: seconds in system
state since last bootedColumn 3: seconds in nice state since last bootedColumn
4: seconds in user state since last bootedColumn 5: time-stamp of observation
(HHMM)

My reporting scheme was to get the amount of seconds spent in each state
since the last observation, add up the different states and express each one as
a percentage of the total. I ran into an interesting issue right away—what about

a reboot? Booting the system zeroes out the counters and subtracting the old
from the new generates negative values, so I had to handle it properly to
provide useful information. I decided to watch for a counter value that was
lower than the last observation's value and, if found, reset the prior values to
zero. To make the chart more informative, a data point was set to 100 for a
reboot and -1 for a normal record. The -1 value causes the data point to be
outside the chart and thus not displayed.

Sometimes a hard copy is preferred when presentations or reports are needed.
The gnuplot authors provide for a variety of output formats, and the script will
switch between X11 display and PostScript output depending upon which
option switches are set.

Figure 1. Sample Chart

Figure 1 is a sample chart produced by the graphing script shown in Listing 2. A
breakdown of the major parts of this script is included in the archive file on
SSC's FTP site, ftp.linuxjournal.com/pub/lj/listings/issue56/2396.tgz. Also
included are the collection script, graphing scripts, a sample crontab entry for
running the collector script and the following charting scripts:

• cpu: charting cpu information as described above
• ctxt: charting context switching per second
• disk: disk utilization: total I/O, read/writes and block read/writes per

second
• eth: Ethernet packets sent and received per second and both incoming

and outgoing errors

https://secure2.linuxjournal.com/ljarchive/LJ/056/2396l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/056/2396.tgz

• intr: interrupts by interrupt number and charted per second
• mem: memory utilization and buffer/cache/shared memory allocations
• page: page in and out activity
• ppp: Point-to-Point Protocol packets sent/received per second and errors
• proc: new process creation per second
• swap: swap activity and swap space availability

I'm currently converting this toolkit to Perl and building a web interface to allow
these charts to be viewed as HTML pages with the charts as GIF files.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue56/2396.tgz.

David Gavin (dgavin@unifi.com) has worked in various support environments
since 1977, when after COBOL training, he had the good fortune to be assigned
to the TSO (Time Sharing Option) support group. From there he moved to MVS
technical support, to VM and to UNIX. He has worked with UNIX from
mainframes to desktops, baby-sitting Microsoft systems only when he couldn't
avoid it. He started using Linux back when it meant downloading twenty-five
disks over a 2400 BAUD dial-up line.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/056/2396.tgz
mailto:dgavin@unifi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

CIDR: A Prescription for Shortness of Address Space

David A. Bandel

Issue #56, December 1998

This article explains the concept of CIDR and shows you how you can
implement it on your network.

CIDR, Classless Inter-Domain Routing, allows you to maximize use of the limited
address space under the current implementation of the Internet Protocol
version 4 (IPv4). After reading this article, even if you have never configured a
computer for network communications before, you should have a good
understanding of these references to networking.

Background

CIDR is the current trend in routing and has been for over three years. This
concept was introduced in 1993 to alleviate the shortage of Internet Protocol
(IP) addresses until the next generation (IP version 6—IPv6, aka IPng for IP next
generation) arrives.

Currently in testing, IPng will significantly expand the IP address space by
several orders of magnitude. IPng will also come with its own security
enhancements. Those desiring to participate in the future today may have the
opportunity to do so, since Linux has kernel-level support for IPng. Until IPng is
deployed on a wide scale, making the best use of what we have is what CIDR is
all about.

To help you understand why we need CIDR at all, let's journey back in time to
the beginning of this decade. IPv4, the protocol used by computers to find each
other on a network, was in use then, but there really weren't many connections
to the Internet or machines needing Internet connections. In fact, a good
number of systems still relied on uucp, the UNIX to UNIX copy protocol, where
machines “called” each other at predetermined times and exchanged e-mail
traffic. At that time, the IP-address pool seemed unlimited. That was also about
the time Mosaic, the first web browser, appeared.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

IP Basics

Those who consider themselves well-versed in “classful” routing may wish to
skip ahead to the next section. Computers understand base 2 numbers (ones
and zeroes), and humans understand base 10 (0-9), so engineers worked out a
compromise to give computers numbers while keeping it simple for use by
humans. All computers on the Internet have a unique IP address which can be
represented by a string of ones and zeroes. If that string is divided up into four
sets of eight (octets), you get four numbers with a range from 0 (eight zeroes)
to 255 (eight ones), which are arranged in the form XXX.XXX.XXX.XXX. This
arrangement is called “dotted decimal notation” and makes understanding the
significance of each unique IP address a little easier for us humans. These
addresses were then further broken down into arbitrary “classes” A-D. Looking
at the first half of the first octet:

Class A = 0-127 (0000)
Class B = 128-191 (1000)
Class C = 192-223 (1100)
Class D = the rest (1110)

The positions beginning from the left represent 128, 64, 32 and 16—see Table
1. Furthermore, Class A uses only the first number as the network number, e.g.,
10.XXX.XXX.XXX; Class B uses the first two numbers as the network number,
e.g., 172.32.XXX.XXX; Class C uses three numbers as the network number, e.g.,
192.168.1.XXX; Class D is reserved for testing purposes. A network address can
be thought of as having a network and host portions represented by numbers
and XXXs respectively. For a Class C address, the network portion consists of
the first three octets with the host portion as the final octet.

The following concepts with respect to networking computers must be
understood. Note that the “definitions” I provide here are given to aid in
understanding basic concepts for use in this article, and are not the actual
definitions of the terms.

• host address: A unique address assigned to a communications device in a
computer. If a computer has multiple communications devices (e.g.,
Ethernet cards or modems), each of these devices will have its own
unique address. This means that a host (computer or router) can be multi-
homed, i.e., have multiple IP addresses. This can also be artificially created
by assigning different IP addresses to the same device (called IP aliasing).

• network address: The base (lower) address assigned to a network
segment, depending on its netmask. This is the first host IP number on a
subnet. For example, on the Class C network that extends from
192.168.1.0 to 192.168.1.255, the network address would be 192.168.1.0.

• broadcast address: The upper address assigned to a network segment. In
the example above, this address would be 192.168.1.255.

https://secure2.linuxjournal.com/ljarchive/LJ/056/3017t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3017t1.html

• netmask: A mask consisting of that portion of the IP address where all
greater bits consist of ones (in base 2) and all lower bits consist of zeroes
—in other words, ones represent the network portion of the address, and
zeroes represent the host portion. For the example above, this mask
would be 255.255.255.0.

With this introduction to IP addressing, and remembering that a decade ago
almost no PCs participated in networking, it is easy to see why during the 1980s
IPv4 seemed to have an endless supply of addresses, even though not all
addresses could be assigned. Theoretically, if you could make use of all the
usable IP addresses available, you'd have a maximum of approximately 500
million addresses, but even 100 million is extremely optimistic and insufficient
for today.

Before leaving this section, I'd like to describe an experiment. This experiment
will not work properly if performed in an environment with machines using
only the Microsoft Windows IP stack, since its implementation is broken, or at
least doesn't follow the rules everyone else plays by. Therefore, you will need to
be on a UNIX or Linux machine with other UNIX or Linux boxes on your
network. Type the following command:

ping -c 1

What you will see in response is every UNIX box answering back with its IP
address, and each reply following the first one will have (DUP!) next to it,
indicating it is a duplicate reply. The -c 1 argument tells ping to send only one
ping packet. The number of replies received will depend on how many (non-MS)
machines you have on the network. If this is performed from an MS Windows
machine (95 or NT), you will receive a reply from the local machine only.

What is the point of this little demonstration? If you change the netmask on a
machine, say from 255.255.255.0 to 255.255.0.0 thereby changing its network
and broadcast addresses, even though nothing else changed (i.e., it still has the
same IP address and is still connected to the network the same way) it will
cease talking to its neighbors. In other words, this machine is now on another
network and will require a gateway to talk to the other machines on the local
net (all bets are off for the Microsoft machines).

CIDR

While IP classifications A-D are still in use in the networking world, those terms
are obsolete. For the sake of clarity, I will continue to use them to explain how
CIDR works and how you can implement it. Along with CIDR comes the concept
of variable length subnet masking (VLSM).

Basically, with a “Class” address, you have a default subnet mask. For a Class C
address, this default subnet is 24 bytes long, so putting all ones in the first 24
bytes and zeroes in the rest, we have 255.255.255.0. For class A and B, this
would be 255.0.0.0 and 255.255.0.0, respectively. This basically gives anyone
assigned a full Class C address 256 unique addresses, of which two are
reserved, one each for network and broadcast addresses. Under “classful”
addressing, we are limited to providing full Class A, B or C addresses to those
requiring IP addresses. With “classless” addressing, we can subnet these
addresses quite simply. As stated above, the network portion of the address is
equivalent to that portion of the IP address corresponding in base 2 to all ones,
and the host address to all zeroes. This means that a Class C address looks like:

11111111.11111111.11111111.00000000 = 255.255.255.0

(128+64+32+16+8+4+2+1 in the first three positions and 0 in the last). Again,
note that this is 24 ones and 8 zeroes, for a total of 32 positions.

Let's say we have one Class C address (192.168.1.0) available for use, but we
have two offices with approximately 75 hosts at each location, one in New York
and one in New Jersey. While we could simply use the Class A address at each
site with each office using unique numbers, we can't connect them together
because machines in New Jersey can't find those in New York and vice versa.
The reason these two portions of the network can't find each other is because
in order for a computer to find another on a network, it assumes an address on
its local network (the host portion where all the numbers are zeroes) is directly
connected to it, and one on another network is reachable only by going
through a gateway.

A gateway is a machine (computer or router) that has two or more network
addresses, at least one on the local network and one or more on other
networks. A gateway sends any communications not on the local network via
one of its other communications devices, depending on the information stored
in its routing table. Under classful routing, we would need two half-used Class C
addresses for each office, which would be very wasteful of scarce IP addresses.

With CIDR, we can cut the Class C address into two different networks. To do
this, we will extend our netmask by one more bit, giving us two separate
networks, where before we just had one. This will change our netmask from
255.255.255.0 or 24 ones (hereinafter referred to as /24) to a /25 network, or
255.255.255.128. Both of our new networks will have this same netmask; all
other rules remain the same. We now have one network with a network
address of 192.168.1.0 and a broadcast address of 192.168.1.127. The other
network will use a network address of 192.168.1.128 and a broadcast address
of 192.168.1.255.

In the same manner, we can continue slicing up our network into four, eight,
sixteen, thirty-two, ... networks. In fact, starting at /8, we can slice and dice until
we reach /30. Since we have 32 numbers to work with, a /32 represents just one
address, and in this special case, there's no need for network or broadcast
addresses. That also means a /31 would represent two addresses, but since
one would be the network address and the other the broadcast address, this
would leave us with no host addresses—almost certainly undesirable.

Under this scheme, the first octet of the netmask would remain 255, but after
that we could change any of the other numbers. Instead of being restricted to
255 and 0, we may find ourselves replacing the first zero in our netmask with
any of 128, 192, 224, 240, 248, 252 or 254, except in the last octet as noted
above. The network and broadcast addresses would bind each subnet (see
Table 2 for details). Now, any network can be referred to by its variable length
subnet mask, or the number of ones in the host portion of the address from /8
to /32 (excepting /31). By extrapolation, each host can be referred to directly by
its IP address and the VLSM notation, so that it is readily apparent what the
network and broadcast addresses and netmask are.

For example, if someone told me to assign my machine 192.168.0.50/27, I
would know that the network address was 192.168.0.32, the broadcast address
was 192.168.0.63, and the netmask was 255.255.255.224. For those of you who
still have problems visualizing how this all translates, I've provided a chart to
assist you (Table 3).

You will find more uses for classless addressing than this. CIDR can also give
you a way to isolate departments in large organizations to provide better
security (by implementing internal firewalls) and decrease traffic on any given
network segment, reducing collisions and increasing response times.

Private Address Groups

Another way many companies can expand their pool of usable IP addresses is
to take advantage of the private IP addresses set aside for companies and
individuals not requiring direct Internet access on all their machines. These
numbers can be used as seen fit.

By using a firewall or proxy server that performs network address translation
(NAT), called “masquerading” in the Linux community, these machines can still
connect to the Internet. The bright side is you won't be routing internal
company addresses to the Internet, since most routers are set up to not route
these private addresses. Conversely, no one can directly access your systems,
so rogue web sites springing up in your company will not come back to haunt
you. In order for anyone to access an internal computer, they would have to

https://secure2.linuxjournal.com/ljarchive/LJ/056/3017t2.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3017t3.html

either log in to the proxy server first, then continue in, or be redirected by the
proxy through the server to the designated machine.

The reference for those addresses we can make use of with no prior
coordination is RFC 1918, “Address Allocation for Private Internets”, February
1996. These private addresses are as follows (excerpt from RFC):

10.0.0.0 - 10.255.255.255 (10/8 prefix)
172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

Note that under the old classful addressing, while the first address segment is
one Class A network, the second would actually be 16 Class B networks, and the
final segment 256 Class C networks. By implementing a Linux gateway box and
setting up some simple rules in ipfwadm (generally available with all Linux
distributions), we can perform masquerading or Network Address Translation,
giving all computers on the private network full Internet access. However, those
on the Internet cannot get to any of the computers with private addresses
unless one of two things happens. One, the administrator sets up the gateway
to act as a proxy server; proxying requests on a particular port to a particular
computer, or two, by the Internet user using TELNET to access the gateway box
first, then on to the internal computers. Thus, private addresses stay private.

These address groups can also be put to use in private networks that piggy
back on the Internet. By using two “live” (non-private) IP addresses, one on each
network's “gateway” machine, we can tie two private networks together using
Linux's IPIP, IP tunneled inside IP. While this won't provide privacy unless the
two gateways are running an encryption program such as ssh (secure shell), it
can provide a virtual network.

Conclusion

While live Internet addresses are becoming scarce, companies and individuals
can maximize use of their current address space and even expand their
address space through the use of private addresses. CIDR can also be used to
improve security and increase network response time through subnetting.

By staying current with trends in such things as CIDR and Linux's networking
software, most obstacles to Internet and Intranet connectivity can be easily
circumvented. As CIDR provides everyone with a way to maximize the little we
have, private addresses afford us the flexibility to expand beyond those
addresses provided by our Internet Service Provider.

David Bandel is a Computer Network Consultant specializing in Linux, but he
begrudgingly works with Windows and those “real” UNIX boxes like DEC 5000s
and Suns. When he's not working, he can be found hacking his own system or
enjoying the view of Seattle from 2,500 feet up in an airplane. He welcomes
your comments, criticisms, witticisms and will be happy to further obfuscate
the issue. He can be reached via e-mail at dbandel@ix.netcom.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

User Manager Software

Branden Williams

Issue #56, December 1998

Mr. Williams presents a tool to handle all of your user-administration tasks.

One of the most time-consuming tasks of every system administrator (Linux or
not) is user account maintenance. Whether adding or removing accounts, or
even occasional suspending or enabling, it is definitely something that can be
done by a user other than root. Why spend time going through a stack of
papers on your desk with one thousand user accounts to modify when the
person who wrote the work orders in the first place could just as easily do it?

Now you may ask, “How are these people supposed to do this job? I am not
giving out the root password!” Well, to get around the password problem, I
have a quite simple response: use sudo (pronounced soo-doo). You can get this
neat little gem from http://www.courtesan.com/sudo/. sudo allows a permitted
user to execute a command as superuser (real and effective UID is set to 0, and
GID is set to root's group ID as set in the password file). Using a utility like this,
you can permit certain users to run certain programs, such as an adduser script
or a chfn command. Although certain sanity checks must be in place, I have
found sudo to be a viable solution to keeping the root password secure.

To get around the problem of letting others mess with user accounts, I created
User Manager. Now I rarely spend time dealing with user accounts. User
management is done by the technicians, the billing department and the
salespeople. User Manager, primarily a Korn shell script, does it all. (The Korn
shell can be obtained from ftp://ftp.cs.mun.ca/pub/pdksh/.)

The User Manager script is a framework for your system that can be
customized to add in RADIUS support, multi-homing support and domain
management. For example, one system I set up builds all DNS, web and stats
package configurations and sets up the user account for a multi-home web
customer. It was fairly simple to add this support to the script, and it provides a
great learning base in system automation.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Preparation

The User Manager tar archive file can be found at ftp://ftp.inetinc.net/pub/
usrmgr/usrmgr.tgz. It includes the usrmgr Korn shell script, a C program and a
simple Perl script, a README file, an INSTALL file and an ASCII welcome screen.
The C program, newpass.c, helps with encrypting new user passwords and the
Perl script, loginterp.pl, generates reports from information logged when User
Manager is run.

In order to configure the User Manager software, you should know the
locations of several common utilities on your system. Some of these include
finger, sed, edquota, sort and mail. You can see the complete list in the sidebar
“Programs and their Locations”. Make sure all of these are set correctly in
usrmgr before running the script. If they are not, the script will not execute
properly—steps may be left out.

Once you have the locations of the programs set up, you have some choices to
make. Where do you want your log file to go? Where do you want the scripts to
reside? Which administrator (or administrators) will be receiving e-mail
messages noting the user's actions? Here are the answers I gave when I set up
my system:

• Log File -> /usr/local/adm/usrmgr.logfile
• Scripts Reside in -> /usr/local/usrmgr
• Administrators -> brw,matt,billing@inetinc.net

Note that the administrators can be local user names and/or full Internet e-mail
addresses. For multiple entries, simply separate each address with a comma
and no spaces.

The Report Generator

The reports generated by User Manager's Perl script can be very helpful tools,
not only for your system administration team but also for the billing and
administrative personnel at your company. With sudo installed, the reports list
the user name of each person who ran User Manager, instead of just logging
everything as root. Listings 1 and 2 show the two different report formats
available.

The simple log in Listing 1 is summary information aimed at system
administrators. It lists the number of adds, suspends, enables and deletes
performed by each user and can be used to track any unwanted or
unauthorized users who might be abusing User Manager. If you set up your
system to allow only administrators to access User Manager through sudo, you
can easily track malicious activity by checking what root is doing. If the machine

https://secure2.linuxjournal.com/ljarchive/LJ/056/3050s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3050l1.html

where I obtained the Listing 1 data was a production machine, I would be very
wary of the one add done by root, and would check the detailed logs for more
information.

Listing 2 shows a more detailed report that can be turned on or off by setting
verbose to 0 or 1 in the loginterp.pl script. My personal recommendation is to
leave it on so that you can send these reports to your billing and account
managing crew. It is also helpful in investigating any malicious activities which
may have shown up in the summary reports.

For example, one entry in the summary report detected root doing an add to a
user's record:

Function Performed: User Added
Done by: root
Login: jhanish
Password: ilovesouthpark
UID: 1003
GID: 1003
Real Name: Joe Hanish
Home: /home/jhanish
Shell: /bin/tcsh
Date: 07.29.1998

One might deduce that a possible security hole was exploited and now a new
user, jhanish, has been added to the system. So, we take a look at the /etc/
passwd entry to see what else may have happened.

jhanish:x:0:1003:Joe Hanish:/home/jhanish:/bin/tcsh

In this case, after adding himself to the system, he then created a back door to
access the system as root if he wished. Of course, a skilled hacker would not
leave traces like this, but someone just playing around can easily be caught.

You may want to set a cron job to run loginterp.pl on a weekly or monthly basis
to generate report files and send them automatically to administrators through
e-mail. For example:

6 0 1 * * root /usr/local/bin/loginterp.pl |
mail -s UserMGRLogs root,billing

The Scalability

User Manager was built as a basic shell for all your user managing functions. As
a system administrator, I realize every system has a unique function, operating
system and system administrator's style of managing. User Manager gives you
a platform on which to create a customized software package to handle
everything you do when managing users. This will give you time to do more
interesting tasks without worrying about whether you missed a step in the
process.

https://secure2.linuxjournal.com/ljarchive/LJ/056/3050l2.html

One other application for this script could be to add in web-hosting support. An
ISP that hosts web sites could automate all the steps required to add
customers to its systems. To do this, start with the User Manager framework
and add in the other steps.

For example, one system I am familiar with is a small web-hosting company
that has two main servers. The second server is really only a backup mail
spooling system and a secondary DNS. Even though this is a simple example of
added functionality in User Manager, the concept can be applied across an
infinite number of servers and/or locations.

The User Manager software is on the main system. Once a web customer is
added, the script goes out and builds the DNS record, rebuilds the /etc/
named.boot file on the fly, passes the configuration to the secondary name
server and rebuilds its /etc/named.boot file. After all the configurations are
built, it reloads each name server's database.

Once all the DNS is complete, it then takes care of the /etc/sendmail.cw file (this
step always caused me problems) and sends a HUP signal to sendmail to get it
to recognize the changes. When that is done, it actually adds the user account.
It then builds the httpd configuration on the fly as well as the stats package
configuration.

The Solution

User Manager is the solution to all your user-administration problems. With the
added help of sudo and the report generation program, user management is
no longer a worry. Due to the script's scalability and robustness, it can be
ported to any system with ease. Even a BSD password database system can
have User Manager running on it. Because it is written as a Korn script, it is not
limited by any flavor of UNIX. It can be every system administrator's friend and
might even cut your work week down dramatically, giving you some time for
the things that truly matter in life.

Branden R. Williams is Vice President of I-Net Solutions, Inc. (http://
www.inetinc.net/), where he consults with several other companies doing UNIX
system and network administration, security management, and system
performance tuning. When he is not in the office, he enjoys sailing, playing his
acoustic guitar, and astronomy. He can be reached via email at
brw@inetinc.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

X Window System Administration

Jay Ts

Issue #56, December 1998

An introduction to X structure, configuration and customization.

When the X Window System was first released, many complained that the
system was big, slow and complicated. My first experience with X was installing
one of the earliest releases available for Intel hardware on my 386 running
UNIX with 4MB of RAM and an 80MB hard drive. The installation took up most
of the drive, and X ran so slowly (with much thrashing of virtual memory) that it
was simply unusable. I quickly decided to remove it from my system and went
on to “real work”.

However, I got a taste of what X was like and appreciated how the developers
took the “high road” in their design. They combined a high degree of versatility
and a client-server architecture, at the noticeable expense of performance on
what is now generally considered to be archaic hardware.

Today, most computers running Linux have more than sufficient hardware
resources to run X with good performance, so running X on an inexpensive
desktop system is commonplace. Now that we've all got X running on our
desktops, the next hurdle is configuring X and customizing it to meet our
needs.

X's Client-Server Architecture

I will start out by presenting a brief description of how X is structured and how
the parts interoperate. Once you know this, it will be much easier to make
sense of the implementation details.

One of the most basic facts to be aware of is that X is not part of the kernel.
Unlike other operating systems, where applications make requests to put up
windows, menus, et al., to the operating system API, X is entirely contained in

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

user space, running as ordinary processes. These processes are classed into
two groups: client processes and server processes.

The job of the X server is to handle the interface to the hardware (graphics
adapter, keyboard and mouse) and a few additional low-level services such as
drawing, color allocation, event handling, inter-client communication and
managing a resource database of user preferences.

Clients communicate with the X server through the X protocol, which can be
run over interprocess communication (IPC) on one system, or between systems
using TCP/IP. This allows an X client to run on one system and use the display,
keyboard and mouse on another. Yes, it is even possible to run an X protocol
over the Internet.

For example, if I use TELNET to access my ISP and run the command xeyes, the
program will start up and display a window on my Linux system. The program
seems to be running locally, even though it is actually running on the remote
system and just using my system for the display. The way this works is that the
remote system is running xeyes, while the client (requesting services) and my
Linux system are running the X server (which fulfills the client's requests). This,
of course, requires that my system be set up to allow it; I use the xhost

command to allow my ISP's system to use the X server on my system. Also, the
$DISPLAY environment variable in my TELNET session must be set correctly
(see below). I am using this example only as a demonstration; if you want your
system to be secure, you will probably not want to allow people to access your
X server from an outside network. One trick used by crackers is to put up an
invisible window covering your display that catches all keyboard input,
including passwords.

Each display is handled by one server process, but many clients can use a
display at the same time. One of the most fundamental client types is the
window manager, which allows the user to manipulate windows. A window
manager performs actions such as drawing “decorations” around windows
(borders, title bars and buttons), and provides functionality such as pop-up
menus and the iconization of running clients. Desktop environments such as
KDE and Gnome are implemented as user-space X clients, as are all other
applications that run under X. These applications can be of any level of
complexity, from xlogo to Netscape Navigator.

X Administration

In the remainder of this article, I will cover some basic X Window System
administration. A full treatment would take a whole book, so I'm going to
discuss only what I consider the most important points for the novice X
administrator. For the most part, I will assume you have X already configured

and running. I will skip over advanced topics such as security and running X
over a network (on X terminals or remote systems) as much as possible. This
article covers XFree86, which comes with most Linux distributions. If you are
running a commercial X server, you may want to skip the section below on
configuring the X server, but the rest of the material covered is independent of
the server you are using.

X Configuration Files

Most files for the X Window System including executables, libraries, manual
pages, include files and miscellaneous other files are kept in the /usr/X11R6
directory tree. There is usually a symbolic link called /usr/X11 to that directory.

The systemwide configuration files for X are in the directory /etc/X11. If you get
a listing of that directory, the output will look something like this:

X fs mwm xdm
XF86Config fvwm twm xinit
XF86Config.0 fvwm2 wmconfig xsm

X Server Configuration

In the above listing, X is a symbolic link to the X server executable, which is in
the directory /usr/X11R6/bin. Note that there is also a symbolic link called X in /
usr/X11R6/bin, which points to /etc/X11/X, rather than the X server in the same
directory. (Yes, there is a reason for doing it that way. Can you figure out why?)
XF86Config is the file read by the XFree86 X server while starting up, and
contains information about the mouse, graphics card, monitor and a few other
things the server needs in order to run. Most of the other objects in /etc/X11
are directories containing sample startup files for programs that have the same
name as the directory. The /xdm directory contains startup files for xdm, the X
display manager. I will discuss the files in that directory later.

The XF86Config file is usually created during the installation of Linux. If you do
not yet have X installed (or working properly), you can use the xf86config

command to create it. Make sure you have collected detailed information about
your mouse, graphics card and monitor first. Once you have a working
XF86Config, you can modify it to change X's behavior. There are two warnings I
want to give before saying anything else.

First, make a backup of the file before modifying it in any way. In fact, this is a
good idea even if you do not plan to make any changes. Notice on the previous
page that I have the file named XF86Config.0 in /etc/X11. That is simply a copy
of the original XF86Config made immediately after Linux was installed. If
anything untoward ever happens to my XF86Config file, I can quickly restore it
from that backup file. Before making any changes to the “real” file, I make a

backup using a numbered extension, such as XF86Config.1, XF86Config.2,
XF86Config.3 and so on. That way, I create a history of my modifications, and
can restore the configuration to its original state or to any previous state. This
is a fairly common practice among system administrators that I suggest you
adopt immediately, if you haven't already. It is also a good idea to make a
backup of this type for the version of the file you are currently using, in case it
is unintentionally overwritten by XF86Config or a reinstallation of the X
software.

The second warning about XF86Config is that the part beginning with Section

"Monitor" and ending with "EndSection" contains very sensitive information. If
you mess it up, you could cause physical damage to your monitor! So don't
change any of it, at least not until after you have read the man page for
XF86Config and the XFree86-Video-Timings-HOWTO.

Now let's have some fun. A couple of simple (and safe) things can be modified
in your XF86Config file relating to how your X session appears and functions.
Both of these appear near the bottom of the file, in the parts beginning with
Section "Screen" and ending with "EndSection". Take a look at your XF86Config
file. Note that there are a few Screen sections. Each corresponds to a specific X
server, labelled by the “Driver” tag. You will need to identify the one that goes
with the server you are running. If your graphics card is reasonably new, you
are probably running one of the accelerated servers, which correspond to the
section that looks like the one shown in Listing 1. Most newer systems use the
accelerated server, but if yours does not, don't worry—the sections for the
other servers (svga, vga16 and vga2) are similar, just much simpler.

The strings that go with the Device and Monitor tags are descriptive in nature
and not critical. Notice the DefaultColorDepth tag, which did not appear in my
XF86Config immediately after installation. I added it to set X's default to
something more interesting than the usual of 8-bits/pixel, which may run the
fastest, but allows for only 256 colors. 16-bits/pixel allows many more (65536)
colors, and 24-bits/pixel allows for “true color” of 8 (or more) bits for each of the
red, green and blue color components.

Next come the Display subsections. Each has a different Depth tag, one for
each mode (bits/pixel) the server can handle.

The Modes tag defines the physical screen resolutions the monitor supports.
These must correspond to the Modeline entries in the Monitor section of
XF86Config or they will be ignored. The first valid entry is the default resolution
for X server initialization. I am often working with development projects where I
target the least common denominator of 640x480, so I use that as my default;
however, you might want to start out at 800x600 or higher. If you want to

https://secure2.linuxjournal.com/ljarchive/LJ/056/3083l1.html

switch resolutions after the server starts up, hold down both alt and ctrl on the
keyboard and press either the + or - key on the numeric keypad to cycle
forward or backward through the list.

The ViewPort tag sets the upper left corner of the virtual display and controls
which part of it will appear centered on the screen when X first starts up. This
works only if your virtual area is larger than your physical resolution. I prefer to
leave this at 0 0, but try using a few different non-negative values and see what
happens. You'll notice the screen is shifted by that many pixels (horizontal and
vertical) from normal.

Last, there is the Virtual tag, which is used to set the size of the virtual screen
area. In 16-bit mode, I may use a physical resolution of 640x480, but I still have
the ability to pan around (using the mouse) within a larger virtual area of
1024x768. The virtual screen area is limited by the amount of video memory on
the video card. For example, at 1024x768 pixels and 16 bits/pixel (or 2 bytes per
pixel), a total of 1.5MB of video RAM is being used. Some cards have only one
megabyte of video memory and would not be able to support that
configuration. Also, note that the X server may use a small amount of video
memory for other purposes, so you may not be able to use all of it for your bit-
planes.

Many more things can be done with the XF86Config file than I can describe
here. For additional details, check out the XF86Config manual page.

Starting the X Server

There are a few different ways to get the X server started. One of the first
methods found by many new users is the startx command, which is actually a
shell script wrapper for the xinit program. Using startx with no arguments
should be enough to start up an X session; however, unless you have set the
DefaultColorDepth as described above, you will probably get only 8 bit-planes.
If you want better colors, you will need to add some arguments, like this:

startx -- -bpp 16

This starts X with 16 bit-planes. The first two dashes cause the -bpp 16 to be
passed as arguments to the X server, rather than the xinit program. If you get
tired of entering the whole command each time, you can create a file named
.xserverrc in your home directory and put in it the command to start the X
server, like this:

exec X -bpp 16 :0

See the xinit(1) manual page for details.

When X starts, it will switch to the first available virtual screen and use that for
the display. Most Linux systems come with the first six virtual screens assigned
as virtual consoles, so the user can switch among them by pressing the alt key
and a function key (f1-f6) at the same time. To get to one of those from the X
display, it is necessary to add the ctrl key, i.e., use ctrl-alt-f1 to get from X to the
first virtual console. Then, to return to the X session, press ctrl-alt-f7. If your
system doesn't have six virtual consoles enabled, you will have to use a
different function key.

Now, if we can have six (or more) virtual consoles, why not have more than one
X session? This is done by providing startx with more information. The X server
needs to know which virtual screen to use and what to name the display.

For example, to start a 24-bit display on virtual screen 8, type:

startx -- :1 -bpp 24 vt8

and to start an 8-bit display on virtual screen 9, type:

startx -- :2 -bpp 8 vt9

The :1 and :2 are the names that X uses to refer to the displays. The full format
for the name is host:N.M, where host is the host name of the system, N is the
number of the display on that system, and M is the number of the screen (in
multi-headed displays using more than one monitor).

The designation :0 is simply shorthand for the first display on the local system,
localhost:0.0. The names :1 and :2 refer to the second and third displays. To
switch among them, simply use the ctrl-alt-fn combination.

To see how these work, start up the :1 and :2 displays as shown above, and
switch to your first display (:0) using ctrl-alt-f7. Then from a virtual terminal
(e.g., xterm, rxvt), run the command

xeyes -display :1

The xeyes program will run (you won't get another shell prompt), but it is not
visible on the screen. Now switch to the second display (ctrl-alt-f8) and you will
see it. When xeyes exits, you will get another prompt in your shell session on :0.

Many X programs support the -display option to specify the display to use. Note
that the environment variable DISPLAY is set to the default display. If you run
the command echo $DISPLAY from a virtual terminal in each display, you can
see how it is set differently on each one.

When xinit starts up, it starts the X server and then looks for a file called .xinitrc
in the user's home directory, which is a shell script that xinit runs. That file
usually contains, as a minimum, lines like:

xterm &
exec fvwm

which start an xterm terminal emulator, then it replaces the xinit process with
the FVWM window manager. In turn, fvwm looks for its startup file called
~/.fvwmrc. A default for this file can be found in the /etc/X11/fvwm directory.
Notice that the xterm process starts running without a window manager. A
window manager is not a required part of an X session, but you will probably
want to have one.

XDM

Using startx is easy, but if you use X a lot you will probably want to log into it
directly without the complication of having to log into a text console first. Direct
logins to X are handled using XDM. The files in /etc/X11/xdm are used to define
a configuration, and then the simple command xdm starts X with an xlogin
screen to allow someone to enter their user name and password. Like startx,
the xdm command can be entered from a command prompt (as superuser).
This is good for testing, but xdm is actually meant to be run automatically
during the boot sequence—more on that later. Typing ls to get a listing of my /
etc/X11/xdm directory outputs:

GiveConsole Xresources.0 Xsession.0 Xsetup_2
xdm-config.0
TakeConsole Xservers Xsetup_0 authdir
Xaccess Xservers.0 Xsetup_0.0 chooser
Xresources Xsession Xsetup_1 xdm-config

The key file among these is xdm-config, which is the default configuration file
for xdm. The xdm-config file defines the basic configuration, including which
files to look in for further setup information. The contents of xdm-config look
like Listing 2. Note that the names of other files used by XDM are defined here,
so it is possible to use different file names or put the files in other directories.
The defaults work fine, but be aware that on other UNIX systems, or even
different Linux distributions, files may be in a different location. In any case,
you can familiarize yourself with the system's configuration by looking at the
xdm-config file.

The information in xdm-config is specified using X resources, which is a bit like
setting values of data structure fields in a programming language.

The first line of the file sets DisplayManager.errorLogFile, which is where xdm
writes its error messages. If xdm is not starting properly, take a look at the
error file. You will probably find some useful messages there. On older Red Hat

https://secure2.linuxjournal.com/ljarchive/LJ/056/3083l2.html

systems and other UNIX systems, the file was placed in /etc/X11/xdm, but in
more recent versions (e.g., Red Hat 5.1), it is in /var/log/xdm-error.log. This is in
accordance with the Linux File System Hierarchy Standard (FSSTND).

DisplayManager.pidFile (/var/run/xdm.pid) is a file to which xdm writes its
process ID. This can be handy if you are adding customizations and you want to
restart X to check if they work. Type the command:

kill -TERM `cat /var/run/xdm.pid`

to kill the xdm process before restarting it. Actually, I prefer the command:

killall -TERM xdm

which does the same thing. A variation is to replace the TERM (terminate) signal
with HUP (hangup); this does not shut down any running X sessions, but does
restart xdm with the new configuration (used for any new sessions that are
started). If you are doing your X administration from within an X session, you
may want to use that method to avoid discontinuities in your GUI services.

The file pointed to by DisplayManager.servers (Xservers) is used by xdm to start
the X server processes. It contains information that tells xdm how to start each
X server process. For example, the line

:0 local /usr/X11R6/bin/X -bpp 16 vt7 :0

in my Xservers file will start display :0 on the local system using the command
and arguments as provided. To start more than one display, simply add lines to
the Xservers file in this same format. If the Xservers file contains these lines:

:0 local /usr/X11R6/bin/X -bpp 16 vt7 :0
:1 local /usr/X11R6/bin/X -bpp 24 vt8 :1
:2 local /usr/X11R6/bin/X -bpp 8 vt9 :2

three displays will start up when xdm is run—a 16-bit display on virtual
terminal 7, a 24-bit display on vt8 and 8-bit on vt9. The -bpp 16 option is
redundant, since I've defined DefaultColorDepth to be 16 in my XF86Config file.

Notice the asterisk in the last few lines of xdm-config. This mechanism is called
“loose binding” and is a wild card character used to match all possible field
names. The field names in this case are the names of the displays. Display :0 is
referred to as DisplayManager._0. (It is _0 for display :0, _1 for display :1 and so
on.) The underscore is used instead of the colon because in a resource, the
colon is a separator between the resource name and its setting. An asterisk
means the same file is used for all of the displays, but when the display is
specified explicitly (called “tight binding”), the file is used just for that display. Of

course, it would be possible to use only tight bindings and specify the same file
each time, but the loose binding method is easier.

After the X server starts and before the xlogin program is run, xdm looks in the
file defined by the DisplayManager._0.setup resource (Xsetup_0). This is a shell
script containing arbitrary commands, so it has a great deal of versatility. I like
to put a more pleasing background behind the xlogin window than the default
black and white pattern, so I might use a command like this:

/usr/X11/bin/xsetroot -solid darkcyan

to make the background (root window) a solid color. To make things more
interesting, the lines:

/usr/X11/bin/xloadimage -onroot \
 /usr/local/images/tiles/purpleblue2.gif

tile the background with an image of my own design. Be sure the xloadimage
program is on your system before doing this.

Again, a warning about security. The program(s) run out of Xsetup._* files may
have their keyboard and mouse inputs disabled, but if they do not exit before
the user successfully logs in, they will continue to run with superuser (root)
permissions. For example, if the line

/usr/X11/bin/rxvt &

were in the Xsetup_0 file, the user who logs in on display :0 is granted a
superuser shell, which is not a desired condition. This is an obvious example,
but others may not be as obvious, so be careful.

Around Christmas, it might seem cute (and harmless) to put

/usr/X11/bin/xsnow &

into the Xsetup file to make snow appear to fall while the computer is waiting
for a login; however, since it will be running with the user ID of root, the user
will not have permission to kill the process after login. Also, many people will
get tired of seeing snow falling in the background of their X sessions after
awhile. Fortunately, there is a way to make the xsnow process exit before the
user's login session begins. First, add a line that saves the process ID of xsnow
immediately after the one that starts it, like this:

/usr/X11/bin/xsnow &
echo $! >/var/run/xlogin_xsnow.pid

After the user is authenticated by xlogin and before his X session starts, xdm
runs the shell script named in the DisplayManager._0.startup resource
(GiveConsole). This is normally used to change the ownership of /dev/console
to the user, so that error messages directed to the console can be displayed in
the X session, using xterm or rxvt with the -C option, or with xconsole. However,
you can add whatever you want to the script. For example, the following lines
force xsnow to exit:

kill -9 `cat /var/run/xlogin_xsnow.pid`
rm -f /var/run/xlogin_xsnow.pid

Now, here's an exercise for you. Many sites want the ability to shut down the
system directly from the xlogin screen without requiring the user to log in or su

with the root password. With your favorite text editor, create a Tcl/Tk script
named xlogin_buttons that contains the lines shown in Listing 3, and make it
executable with the command:

chmod +x xlogin_buttons

Now follow the above xsnow example to modify your Xsetup_0 and
GiveButtons scripts to use the Tcl/Tk script instead of xsnow. I put the script in /
etc/X11/xdm and put these lines in my Xsetup_0 script:

/etc/X11/xdm/xlogin_buttons &
echo $! >/var/run/xlogin_buttons_0.pid

and these two lines in my GiveConsole script:

kill -9 `cat /var/run/xlogin_buttons_0.pid`
rm -f /var/run/xlogin_buttons_0.pid

Be sure to check that the Xsetup_0 and GiveConsole files are defined in the
xdm-config file.

Along with the DisplayManager._0.startup resource is DisplayManager._0.reset

(TakeConsole), invoked after the X session ends and before xdm resets the X
server prior to the next login. Normally, this simply changes the ownership of /
dev/console back to root, but you can add customizations there too.

Configuring xlogin

The xlogin program identifies and authorizes the user by accepting the user
name and password. These are entered at the prompts in the xlogin window. If
you want to change the xlogin display, take a look at the file pointed to by
DisplayManager*resources, which on my system is called /etc/X11/xdm/
Xresources. That file contains resource definitions for the xlogin and other
programs started by xdm before the user's X session begins. Rather than
having xlogin display the host name of my system, I prefer the message

https://secure2.linuxjournal.com/ljarchive/LJ/056/3083l3.html

“Welcome to Linux” colored blue. To do this, I define the xlogin*greeting and
xlogin*greetColor resources as shown in Listing 4.

A security consultant might wince at seeing a system that is configured to say
“Welcome” to any user who happens to pass by and “Try Again” if they don't
guess the right user name/password combination. I do this only on my home
system. If you're working in an academic or corporate environment, you might
want to use something like:

xlogin*greeting: CLIENTHOST
xlogin*fail: Authorized Users ONLY!

Color Specification

In the above example, most of the colors are specified as RGB triplets in the
form of #rrggbb. You can use 1 to 4 hexadecimal digits for each primary color,
so to specify a not-totally-bright red, #c00, #c00000 and #c00000000000 are all
equivalent. You can use color names like white (equivalent to #ffffff) or black

(equivalent to #000), as in the above example. To get a list of color names X
knows about, use the showrgb command. These two methods have been
available in the X system since its first public release and are somewhat limited.

In release 5 of X11, new methods were added. One of the main problems with
the older method is that a color specified in the 3-digit format, which provides
only 4 bits for each primary color, may work fine for a display with an 8-bit color
depth, but on a 16-bit or 24-bit display it will not look right. For example, #fff

will display as bright white on an 8-bit display, but will be an off-white (#f0f0f0)
on displays with 16- or 24-bits/pixel. You can get around this as I did above by
always using at least 6-digit color specifications or using the new Xcms RGB

method,

RGB:f/f/f

which automatically expands to #ffffff for displays of more than 8-bits/pixel. As
with the original method, 1 to 4 hexadecimal digits are specified for each color.
But with the new method, you can use a different number of digits for each.
Instead of being taken as absolute numbers, the digits are used as scaling
factors. For example, a single digit 9 represents 9/15, and 09 represents 9/255.

If you don't like using hexadecimal digits, you can use the RGBi (RGB intensity)
format, like this:

RGBi:1.0/1.0/1.0

That will also produce a bright white. The values for red, green and blue are
specified as floating point numbers between 0.0 and 1.0, inclusive. There are

https://secure2.linuxjournal.com/ljarchive/LJ/056/3083l4.html

also other, much more complex color spaces such as TekHVC (hue, value,
chroma) and several CIE formats.

The User's X Session

By now, you should have a very good idea of how to configure xdm, so I want to
tie up a few loose ends before covering how to start xdm automatically.

One file you might want to take a look at is one named by the
DisplayManager*session resource in xdm-config. This file (Xsession) is yet
another script. It is run by xdm to create the user's X session. Typically, it
defines the file .xsession-errors in the user's home directory to be the error log
file for X programs (the “clients” of the client-server architecture). The .xsession-
errors file is truncated to avoid confusion with errors that happened in the
previous session, then both standard output and standard error output is
redirected to it. In addition to your xdm error file, the .xsession-errors file is a
good place to check for clues if your X session is not starting properly.

Next, the file .xsession in the user's home directory is executed. From the user's
perspective, xdm uses the .xsession file in the same way startx uses .xinitrc.
However, there are a couple of differences. First, .xinitrc must be a shell script,
but .xsession can be any executable program (and must have its execute bit
set). This allows for additional flexibility, although .xsession will usually be a
shell script that is very similar (and possibly identical) to .xinitrc. It is possible to
make one a symbolic link to the other to simplify management and to ensure
that startx and xdm both create the same working environment.

Second, when the X session is started by xdm, the user has not yet started a
login shell, and the shell's startup scripts (e.g., .bash_profile and .bashrc) have
not been run. Because of this, it is necessary to set (in .xsession) those
environment variables, such as PATH, that must be available for any programs
run from .xsession or any window manager or other program started from that
script.

I've just briefly described the default behavior of the /etc/xdm/Xsession script.
Usually it is left alone, and customization on a per-user basis is done with the
.xsession program in the user's home directory. However, it is also possible to
create system-wide customizations by modifying Xsession.

Running xdm Automatically

After you have used xdm from root's command line to successfully start an X
session, the next step is to run xdm automatically during system initialization.
This can be done in several different ways. I will describe three—the normal

way, an odd way and a weird way. Take a look at your /etc/inittab file. You
should find these two lines:

id:3:initdefault:
x:5:respawn:/usr/bin/X11/xdm -nodaemon

The first line sets the default runlevel to 3 (full multi-user mode, with
networking) when the system is booted, and the second tells the init process to
run xdm when the system's runlevel is 5. On some Linux systems, such as
Slackware, this may be 4.

The normal way to have the system run xdm automatically is by changing the
first line to:

id:5:initdefault:

This will cause the system to boot to runlevel 5 instead of runlevel 3. In the
second line, “respawn” tells init that if xdm exits, to immediately restart it.
Startup scripts will be run from /etc/rc.d/rc5.d rather than /etc/rc.d/rc3.d. This
means if you have configured your runlevel 3 daemons just the way you want
them, you will have to do it again for runlevel 5.

If that seems like too much bother, use the odd method and change the second
line instead of the first one, like this:

x:3:respawn:/usr/bin/X11/xdm -nodaemon

This will start up the xdm process in runlevel 3 instead of runlevel 5, preserving
your runlevel setup.

Finally, the weird way is to start xdm like any other daemon process and ignore
the /etc/inittab file entirely. Add a script to the directory /etc/rc.d/init.d that
looks like this:

#!/bin/sh
/etc/rc.d/init.d/X.init - Start X Window System
echo "Starting X Window Services: xdm"
/usr/X11/bin/xdm

Then, put a symbolic link to the script in the directory /etc/rc.d/rc3.d. When the
system is booted, init runs these scripts in the same alphanumerically sorted
order that the ls command would display them. On my system, I put in a link
called S97X that causes X to be started after almost everything else. Take a look
at the other files in the rc3.d directory (using ls -l) and follow their examples.
This method can be handy, because it doesn't restart xdm each time xdm exits,
and sometimes that might be desired. A simpler way to do the same thing
using inittab is by typing the line:

x:3:once:/usr/bin/X11/xdm -nodaemon

One note of caution is needed here. The /etc/inittab file is one of the most
critical files on your system. If you mess up your inittab file, your system may
not be able to boot, so maybe that weird method isn't so bad after all.

Conclusion

Well, there you have it. I did my best to crunch a book on X Window System
administration into one magazine article. I've covered most of the basics of
managing X, but also left out quite a bit. If you want more information, check
out the sources of definitive documentation listed in the “Resources” sidebar.

Jay Ts has been using UNIX since the year 6 B.X. (before X), and now provides
consulting services for Linux. He can be reached at jayts@bigfoot.com; his web
page is at http://www.kachina.net/~jay/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/056/3083s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LJ Interviews Linus Torvalds

Marjorie Richardson

Issue #56, December 1998

With 2.2 on the horizon, LJ once again talks to the man who started it all—Linus
Torvalds.

Marjorie: Everyone wants to know about the new kernel in 2.2. What new
features have been added? Anything going away?

Linus: Most of the new 2.2 features are about performance, especially on high-
end hardware. The SMP support is much better, and the kernel is more
aggressive about caching file names, etc. Also, it works on more hardware.

There have been some nervous people wondering whether it would still work
on the small machines, and I essentially spent the last week making sure it still
does. We had some tweaks that needed to be made simply because there had

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

been bit-rot with respect to small machine behaviour—none of the main
developers use small machines much during the development phase.

Features going away? I think we're phasing out some of the support for things
that people no longer seem to be using very actively, so yes, some of the
esoteric code may be gone, partly because nobody cared to maintain it. On the
whole, it's all there, larger and better than ever.

Marjorie: You seem to be quite excited about the addition of SMP—tell us
about it. Will having this feature open new doors for Linux?

Linus: We had SMP support in 2.0 too, thanks mainly to Alan Cox. The new thing
about 2.2 is that the SMP support is no longer just a tacked-on feature no one
actually trusts, but is much better integrated. I've done all my development on
SMP machines for the last year and a half.

With 2.2, the Linux SMP code comes of age—it's still not a stately old
statesman, but more like a boisterous young teenager—it's there and it's
reliable. It's going to be polished up in the future, because we're still cutting
some corners to get it up easily and reliably, but now it's really more a matter
of polishing than rewriting completely.

Marjorie: I've been talking to one of the local ISPs, and they have been having
problems with both NFS and NIS. The main problem with NIS is that the newest
version hasn't been ported to the SPARC. Has any work been done in these
areas? Who is working on it?

Linus: I have to admit I haven't followed the SPARC port very closely at all.
Mostly I've been involved with the Alpha, and even that has been surpassed by
my main interest in SMP. You'd better ask others about the SPARC side.

Marjorie: Is there anything different in the installation procedures that users
should be watching out for?

Linus: When it comes to the kernel, not really. The module loading is different,
and some of the system utilities need to be reasonably current with the latest
kernels, but on the whole if you have a reasonably recent distribution, you can
just plop in a new kernel and it will work (apart from maybe upgrading your
pppd, etc., details).

Marjorie: What do you think is missing from Linux? What new features will we
be seeing in the future?

Linus: There are many “big system” features we haven't quite gotten to yet, but
little that impacts most users. Clustering, high-end SMP scalability (expecting

scaling from 8 to 32 CPUs is fairly unrealistic right now), journaling file systems,
etc. Few people need them; the ones who do will get them done eventually.

I think most of the missing functionality a lot of people care about tends to be
in “user land” rather than the kernel. That was true some time ago; it's become
even more true these days. Happily, it's also being addressed more, both on a
high-end server scale (Oracle, etc.) and on a lower-end desktop scale (Corel,
KDE, Gnome, etc.).

Marjorie: What is the status of Wabi and Wine? Will the time come when MS
Windows 95 and 98 programs will run on Linux?

Linus: I don't think you'll see all Windows programs running, but yes, I still
believe that Wine can do it. (Wabi seems to be a dead product, and fairly
uninteresting these days since it does only 16-bit programs.) Wine is still
improving, and some people are actually using it for what they need (mainly
Quicken and a few games, it seems).

Marjorie: Do you think a standard GUI is a necessity for Linux? Will any of the
currently available desktops (KDE, GNOME, etc.) fill the bill?

Linus: I don't think it's a necessity to have a standard GUI. We need a better
interface than plain X and TWM, but FVWM took us a long way, and KDE and
Gnome are tackling the integration and complete desktop issues rather than
just the window manager. I think we'll end up with both KDE and Gnome for
awhile, and they'll eventually do the same things and work pretty much the
same. Then you'll choose whichever you like more, because all the programs
you want to run will run on both.

Marjorie: People always ask you, “What direction do you want to see Linux
take?” Let's reverse that: “What directions do you want to make sure Linux does
not take?”

Linus: I want to make sure Linux doesn't stagnate. I like to see new areas open
up—the people who did the port of Linux to the PalmPilot must be crazy, but I
enjoyed seeing that kind of thing happen.

Marjorie: When did you realize that the “chaos Linux development” model was
really working?

Linus: I had never realized it wouldn't work. It wasn't planned chaos, and I
never thought there would be problems. And there never really were. It worked
out of the box—it's just scaling up to a larger scale.

Marjorie: You seem to be at every show that involves Linux. How do you
balance traveling, work and family and stay sane?

Linus: Lots of medication.

Heh. Actually, I haven't been traveling too much lately. I did a reasonable
amount of flying earlier this summer because there were a few conferences
close to each other, but on the whole I try to avoid going to too many
conferences. They're fun, but only when done in moderation.

Not traveling still doesn't mean I have tons of free time, obviously, and there
have certainly been some weeks when I considered myself too busy. Things
tend to calm down every once in a while, and I can take a breather.

Marjorie: What can you tell us about working at Transmeta? (Or is it still a
secret?)

Linus: I still can't tell you anything but that it's a ton of fun.

Marjorie: On a personal note, tell us about your family and living in the U.S.

Linus: We like it here. My younger daughter was born here, and as such is a
dual citizen of both the U.S. and Finland. We haven't really had too many
problems getting used to it being sunny all the time, and going around in T-
shirts and shorts for 70% of the year.

We've had a few silly paperwork issues (can you believe getting a driver's
license took nine months because it had to go through the INS?), but all in all,
it's been very enjoyable.

Marjorie: What's your favorite breakfast?

Linus: Breakfast? You have time to eat breakfast? I drink a cup of cappuccino
every morning to wake up.

Marjorie: Any words of wisdom you'd like to leave us with?

Linus: Nope. “Be good to each other” and “don't you eat that yellow snow” have
both already been taken.

Marjorie: Thanks for your time.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Building a Web Weather Station

Chris Howard

Issue #56, December 1998

Mr. Howard tells us how he gathers and outputs weather information to the
Web using Linux, Perl and automated FTP.

Last fall, my family and I moved from central Iowa to the little mountain resort
town of Estes Park, Colorado. Estes Park is a beautiful town at the east entrance
of Rocky Mountain National Park. More than three million tourists visit the park
each summer.

When we moved here, I brought along my fledgling consulting business,
Daylight Software, and set up web pages to drum up a little work. In a flash of
inspiration, I decided I would either buy or build weather station equipment
and offer weather data on the Web. Visitors from around the nation—and the
globe—would see my web pages, and Daylight Software would be established
as a Linux consulting powerhouse. Well, maybe it wouldn't lead to global
domination, but it would surely be a good thing. I saw it as a community
service, since no public weather reporting service was available, other than the
time and temperature sign on one of the local banks.

After some investigation, I decided that my hardware development skills were
not sufficient to design and build weather sensors. I shopped around and
eventually purchased a Texas Weather Instruments “Weather Report” WRL-25
system from American Weather Enterprises of Media, PA (http://
www.americanweather.com/).

The WRL-25 is like many weather stations in that it includes an RS-232
connection and comes with DOS/Windows software for downloading and
viewing the gathered data. It has sensors for wind speed, wind direction,
temperature, humidity, atmospheric pressure and rainfall. Using a regular
television antenna mast and fittings, I mounted the weather station sensors on
the roof of my house, snaking the sensor cables through the attic space and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

down to my office in the basement. I mounted the handsome display unit on a
shelf in the office.

Across the room from the weather display is my array of computers, including
my Linux workstation. I am running the Red Hat 4.0 Colgate release, 2.0.18
kernel, on my AMD 486DX-4 120MHz ISA server. I built a cable and attached the
weather display to the Boca AT-66 serial card in the server. I then wrote some
Perl scripts to build HTML and GIF files and upload them to my ISP, and to
manage the data readings put out by the weather station.

Equipment Installation

The sensors are mounted on two ten-foot sections of steel TV antenna mast,
available in the U.S. from stores such as Radio Shack. Approximately four feet
are buried in the ground, and the rest of the mast is vertical at the gable end of
our single-story house. The mast is attached with a TV mast bracket at the roof
line of the house. About six feet of mast projects above the roof line.

Figure 1. Weather Sensors on TV Antenna Mast

The sensors came supplied with clamps and hardware to attach them to the
mast. (See Figure 1.) I followed the installation instructions and mounted the
wind direction/speed sensor module pointed north at the top of the mast. The
temperature and humidity sensors are in a “pagoda” enclosure to protect them
from direct sunlight, and the pagoda is mounted about three feet above the
roof line. The rain collector is mounted at the roof line; I used a carpenter's
level to mount it properly.

Figure 2. Wires from Junction Box into House

Multi-wire cables from the sensor modules go into the bottom of the junction
box, where they are plugged into matching connectors from 100-foot cables
which run to the weather display unit. (See Figure 2.) All excess cable is coiled
up and attached securely under the eave. Cables going into the junction box
were left drooping slightly, to encourage rain to drip off instead of flowing into
the junction box.

The 100-foot cables run through the attic and out through a hole at the peak of
the eave. The hole was later filled with caulking to discourage squirrels and
other pests from getting in. From the attic, I drilled a hole in the top plate of an
interior wall and snaked the cables down to the basement. A fancy wooden
switchplate made for cable TV installations serves to mask the hole where the
cables come through the wall into my office/computer area. The cables connect
to the back of the WRL-25 display unit.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f2.jpg

I ended up crawling through the blown-in fiberglass insulation in the attic more
times than I care to remember. If you do this, be careful—wear a dust mask or
respirator and long sleeves and trousers. The attic was hot. I considered this to
be the most difficult part of the installation.

RS-232 Connection and WRL-25 Configuration

I had to set the current time on the display unit and change some of the option
settings. Other than that, the sensors and other features of the WRL-25 were all
calibrated and ready to run.

On the back of the display unit is a 9-pin serial pigtail. The WRL-25 came with a
mix-and-match 4-ended 25 and 9 pin serial cable for adapting to whatever
connectors are available. I did not use that particular cable. My Boca Io-AT-66
six-port serial card uses RJ-45 sockets for its connections. So, I made a cable
from a ten-foot scrap of eight-wire twisted pair that already had an RJ-45
connector crimped on one end. Pin assignments and wiring information were
included in the Io-AT-66 documentation.

The WRL-25 can be programmed to periodically send a status report over the
serial line. This can be used to print directly on a serial printer. I programmed
my unit to send a reading every 5 minutes. I also changed an optional setting to
allow the rainfall rate report and to print a daily Max/Min report at the end of
each day. I set the serial line data rate to 9600bps.

The unit can also be directed using single-character commands through the
serial connection. I rarely use this feature. The PC software that came with the
unit can be used to set various options and settings, as can the buttons on the
display panel. So, more sophisticated programming could be used to query the
unit on demand or change various features. I elected to use the simple logging
feature to gather my data.

I was able to run a quick test on my setup by using the following command:

cat < /dev/ttyS19

This command takes any input appearing on the /dev/ttyS19 serial line and
echoes it to the screen. Pushing the manual report button on the WRL-25
produced a one-line report on the screen. I was a happy camper!

WRL-25 Data Report Format

Reports that come down the serial line look like this:

17:05 08/09/97 WSW 00MPH 460F 069F 057F 085% 23.42F 00.00"D
01.39"M 00.00"R

The first two fields are time and date. The current time and date are
maintained on the WRL-25 display unit. I have not noticed any great drift in the
time setting.

The second two fields are wind direction (WSW—West by South West) and
speed (00 MPH—miles per hour).

Fields 5 through 7 are temperature readings in degrees Fahrenheit. Field 5 is
not connected to any sensor, so it should be ignored. Field 6 is indoor
temperature and field 7 is outdoor temperature.

Field 8 is relative humidity, which in this example is 85%. Field 9 is atmospheric
pressure in inches of mercury accompanied by a single character for falling (F),
rising (R) or steady (S).

The last three fields are daily rainfall and monthly rainfall, both in inches, and
rainfall rate in inches per hour.

At the end of each day, two lines of daily minimum and maximum readings are
reported:

Max 08/08/97 WSW 24MPH 460F 074F 081F 100% 23.42" 00.00"D
01.39"M 00.00"R
Min 08/08/97 SW 00MPH 460F 068F 044F 021% 23.28" 00.00"D
01.39"M 00.00"R

These lines are in the same format as the other reports, except for the first field
which marks these records as Max/Min reports. The readings for daily min/max
are independent. In the above example, the high temperature for the day was
81 degrees F and the highest humidity reading was 100%. These readings did
not occur at the same time and are unrelated, except that both are the
maximum for that particular statistic.

Programming for Data Collection

My first pass at a data collection script was a simple cat command:

cat /dev/ttyS19 >> data1

It worked—mainly by accident. The next time my machine was rebooted, it
didn't work at all. When I fired it up, the weather station console started spitting
out all sorts of long reports. After a little head scratching, it became obvious
that regular character echoing was feeding back command characters—not at
all what I had in mind.

My current script is called weatherd.pl and is shown in Listing 1 with blank lines
removed. Line 8 sets the variable $TTY to be the first command-line argument.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2538l1.html

Line 10 resets the terminal to the appropriate speed, parity and non-echoing. I
used the stty command to get the terminal settings the way I wanted them,
then saved the setup to a file. This stty command reads from that file and sets
the terminal to the saved configuration.

Data is kept in a file, with the name of the file being the current date. Each day's
data goes into one file (lines 14-16). The print statement on line 16 helps me
feel confident things are working right. Beginning with line 27, for each data
line that comes in from the tty, we check to see if it is a minimum or maximum
and that it is still today's data. Minimum and maximum data go into separate
files.

To start weatherd.pl, I added the following single line to my /etc/inittab file:

ws:2345:respawn:/home/weather/bin/weatherd.pl /dev/ttyS19

This line starts up weatherd.pl and respawns it if it should die for any reason.

Programming for Data Display on WWW Page

Now I had the data coming in from the weather station, getting picked up by
weatherd.pl and thrown into a file using the date as its name.

The next step was to format the data into an HTML file for display over the
Web. I wrote a Perl script (Listing 2) that takes the last line from the current
data file, in combination with a template HTML file, and fills in the weather
information. It also calculates the corrected atmospheric pressure and the dew
point. (The dew point calculation was given to me by John Kleist, Colorado
Climate Center, johnk@loki.atmos.colostate.edu.) Last of all, it looks in
yesterday's Max/Min files and puts those values in the output HTML.

I also wrote a script, plotdays.pl (Listing 3), that plots some of the interesting
statistics for the last few days.

Programming for Reliable Periodic FTP Upload

Finally, I have a master program called loop.pl, which I wrote to reliably connect
to my ISP, set up my PPP connection, transfer e-mail, set the system time and
upload the weather data.

First, we have to look at how to automate an FTP connection. FTP is usually
used for interactive network file transfer. To use regular FTP, you need to have
an account on the remote machine. In this case, I use my ISP shell account with
Front Range Internet (frii.net). A user can set up an automated FTP session by
using a file called .netrc in their $HOME directory. I added to my system a user

https://secure2.linuxjournal.com/ljarchive/LJ/056/2538l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538l3.html

called “weather” dedicated to owning the weather data files and scripts. In the /
home/weather/.netrc file, I have the following lines:

machine ftp.frii.net
login:
password:
macdef init
cd public_html
put /home/weather/WWW/wscurrent.html wscurrent.html
put /home/weather/WWW/wsplot.html wsplot.html
put /home/weather/WWW/temp.gif temp.gif
put /home/weather/WWW/pressure.gif pressure.gif
put /home/weather/WWW/raind.gif raind.gif
put /home/weather/WWW/winds.gif winds.gif
quit

The statements in this file define and execute a macro called init. All I have to
do is start FTP and this script attempts to run the macro, uploading my HTML
and GIF files to the appropriate place on my ISP account.

Both Listing 1 and Listing 3 are called from a short script called doup, Listing 4,
which also does the actual FTP call.

Last but not least, loop.pl (Listing 5), is executed continuously by the root user.
The only tricky part of loop.pl is the necessity to recover if a command gets
stuck due to a loss of connection with the ISP. I wrote a replacement for the
regular Perl “system” function which allows me to specify a timeout for each
command. If that command exceeds the time alloted, it and all of its children
are killed. Loop.pl also has other jobs to do, like downloading and uploading my
e-mail and setting the system time using ntpdate. While those jobs are
happening, I have a child process simultaneously running the doup script. If the
ancillary jobs finish first, they give doup a little more time to complete. With a
good connection, there is no problem getting everything done in less than one
minute.

I have two different dial-up scripts, because there are two possible telephone
numbers for the computer to try when dialing my ISP. If the primary number
fails, it tries the second number. If both fail, it sleeps for 60 seconds and tries
again. The goal of the sleep statements in loop.pl is to have the connection
occur approximately every 15 minutes. Otherwise, the comments in the code
pretty much cover all of the details.

Unresolved Issues

One of my main concerns is lightning. Fortunately, our site is in a wooded area
that is somewhat protected from direct lightning strikes. Still, I would feel even
better if the remote weather sensors were electrically isolated from the display
unit and my Linux machine. Some sort of optical isolation would probably work.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2538l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538l5.html

Also, I may have to develop an automated way to set the clock on the weather
display unit.

Otherwise, the system seems to be working pretty well. With weatherd.pl
running from the inittab, and with loop.pl in my startup rc files, the weather
station monitoring continues after a reboot without manual intervention.
Power loss or server failure will interrupt the service, but neither of those are
common occurrences.

Figure 3. Weather Web Page

My weather station web page (see Figure 3) can be found at http://www.frii.net/
~daylight/wscurrent.html. Please stop by and check it out. If you have the
opportunity, come to Estes Park and see what a beautiful place it is.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue56/2538.tgz.

Chris Howard (daylight@frii.net) noodles around with Linux stuff in Estes Park,
Colorado, where the winters aren't too cold and the summers aren't too hot,
and the view out the window is always beautiful.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2538f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/listings/056/2538.tgz
mailto:daylight@frii.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

00
1F

00
08

00
03� k@S5 �\{[���� 00

1A֧� 00
06

00
1E

00
01S��wc���)��6 �'ɛr�,���.�. ?}

�~��7�+Y6NK�&�i�'��������ܴ 00
1Br��}� a�^}

00
12

00
08

00
17

00
03

00
1B

00
17�>�V��� _ �n���-�]��O��Y ��� ���u �� ���(*|

00
19

00
1C�8�"!���7���q�OA�'���ʗ�4��C7hNd�]��R ��|

00
05

00
1Db �'7������� �n��� 00

1BЗ� 00
19

00
1Di%c 5 +�ʛƆpG¬��>��x$ZU�p\)�?

֕�� 00
1E

00
0BVhpG$�����)~5 ����

00
13

00
18

00
12

00
1B�%*4�e�b�h�D<� �� ��m%b~>"]�0 /W1�-&� $B

00
15�d�F�tD�_4��� f&�|)Fa$�б��~ 00

1C
00
18

00
1FZi���cA �uP K�V�ݠ 00

19V �i�K��o�����p�
S���N�TŖ� 00

17 4 ���ږ 00
0F

00
07� �� y�{;/�D�čDy��q���

00
0F

00
04

00
0F

00
1A

00
1B

00
08� ��M� O�� 3f�J�� ��� atZ�r������} ��-

00
01

00
16

00
06

00
12

00
18LS� �� �D ��ã��(g� �\-I` =)0 �ȷ

00
04C;j(�c��v>�ۇ� 00

13
00
03i2I 1����� 00

02պ ��V��#/
00
1B

00
04

00
14

00
18

00
10

00
15��f ��� `�n��10��h�v��< � � � 1�"h#����5�[�R�i$���&��2���mc��

툒 00
1B

00
04

00
1CY���X� ,� �W<�������/ -�I��vE�T� |

00
1B+*����!]F� 8���00

�ߗ11 00
1Ab�����l]�O$��O�͟ 00

15��� Z7D�v�`R��9���*�� �d�.�= �O
+�ٕ 00

16
00
06

00
04

00
1D� ��%� h� ��1-�x� �Gz��@���: R���� �i

00
04

00
1D

00
12

00
10

00
0Eɒ�_L �Is/�C �� K� �ܯ 00

04ү�: !
00
7F�x�k�Vq�� O��[��Ü��˹�n��oޗ 00

0Ck
00
15��k ��y^�מ 00

1C
00
1Dq�� � ��e�� 00

10у ~1z=R�;� 00
1FЃ:@ 00

1E
0
1L��B���ST� �Dv61v�� �

00
10

00
1A

00
07

00
10�O$�j�i~����!}Z��Ƹ� n }�[� �IM(��1� �-

00
1F

00
11

00
01`��� K ��D� P��h�0;�l0��46}"��6�a����;ڎ

00
0E

00
7F

00
1F

00
16b���Nlt�*��.Kh�������M� � �� ���9����o���"�[ouz��u� ��:�O �Y��7�

00
18�'��� gϚ7�Fݳ �! 00

14I :�-1$�X��fp�� 5*�����;��[k 00
�ݢ�17

00
06

00
18

00
07

00
0B��F �t�P�± ��!� �B� R

00
03

00
16

00
16

00
1A

00
10

00
07

00
13' �� ț Ʋ oM w� ��o�w7�{����#˷�ľ��]˳S��T�sF���f��"��(o����������4ȇ

00
18

00
07

00
06

00
07

00
1D

00
17

00
11

00
16`%~ O�ʮ %�1 � � @ ��A�p�&c1��D��� ,�,S � �!!

00
0F

00
10

00
01

00
1E

00
01

00
1B

00
0B� (�$W �8� "F k 9�|3h5'-��Nk�� �Q� �*D���6

00
16

00
03

00
10OH048N� �a� �������X�$�W���6 00

10Ϫ 00
15� �`,],�� 00

0E
00
0Ej4w�g�i��'?

00
0E� �_��ѷ� 00

7F
00
02K �\ �gm%)�䂩00

12
00
0C������= �!

00
06

00
18

00
0F

00
11�z�UP���9t&� 'O � 'Ox���� ��b

00
1D

00
10

00
7F

00
06

00
0B�3 �� b����\b ��@�����. 9��:��

00
12

00
1A

00
18

00
06

00
08

00
06

00
07

00
10

00
145�A�S= �~� � ��gŉ� �ī�ra��3�W�Ư L� �(v

00
01

00
04

00
1C

00
0F

00
02

00
10

00
06

00
1D

00
14J� ��e 7�)w �� �>y��&�j9�U��e"�$ ��� 7<��Z��a~�)a`Kݑ�<

00
0736 �ρ 00

1D
00
1Bbt�q:�X ��WM�� %�c�_ƪ �a�_ƪϬ��U_�����U?

g՟��+V}
00
11

00
06

00
1C

00
01Ū���g��oeUQG���C�"�� >v�u� W" � ����8�~�F*

00
12

00
1C

00
1B

00
0CL��V F1� �j�F ��i� ��E�_`;6���Ęj�oJh�����z�

00
08

00
16

00
19

00
05

00
06

00
07

00
7F

00
02

00
06

00
01� o� �W� >kƐ� ��P= <�\� Z�6X 7X �/

00
01

00
15

00
10�� �%)� [4 �Hݯ��f�-

00
05

00
11

00
1A

00
15

00
08

00
02

00
0E

00
7F���� ��"�p�b �ȍ�reU� 2 ��f� %���<��<���;h 4����N� /

00
14

00
1Fxn�8�G�� }K�X ��A�Ě�5�R3���d��t���m�G��(

00
11

00
16

00
0Cm3[�* �țIH�y� ���|@�DO���M����E

00
05

00
1D

00
08

00
13

00
0F

00
1A

00
0Br�u�� D F�YV�h7��o � ��Z9

00
05

00
03

00
01

00
7F

00
02�[)�GV�; ����U$a>:�f# �Q� �� ��^�ۊ4 00

11
00
05

00
10P�l;I � �ķ-}

00
15

00
10

00
17

00
1C

00
1F

00
1E

00
13���(AE�37�C@���NZ t����L0�uw�j �sW�$�e8��� � ^-

00
0C

00
04� ���� �5J�s�0C�]xS�V���7_ 00

17ϵ �|�m�ng��T:�� ~��;
00
0B

00
1E

00
0B%k� �~�}�� � C;�f��v=�

00
1B

00
1D

00
0B����+�\�pB vQ:�t�K��S�R*��J��, F�I�M��=�

00
0E

00
05

00
04

00
0E

00
08

00
17aq���F� J �1� +C��;�,�r�YT� +-t�X HI� �����z}

00
1E{W��]\ �����

00
15

00
11�9h� I8ʩ�m�ͩ 00

1C
00
07

00
13

00
03

00
16� ������&�� ��ɉ � ��P� .�8����U��

00
190� QY�S-�ؽ+> 00

17x%;�=25�Y��L�ɓl6L ��
��٦�mE�>i���╨���F�}A�)��%���Q��

00
86

00
01

00
1C

00
1D

00
01

00
1A

00
12

00
17�]*"����P �* J� �� 0 �h�7 � � HH ��z�ѣ 00

11u8 2�/
00
0E

00
1E

00
04cj��+j×Y�MFĀ Y+ H� �Ԩ 00

16�� 00
7FPYz��EKeb /���� Ї�?�?

00
03

00
13�����3�~wc}��_�hq�g�����)>K�?0 /

00
10

00
1D

00
08L �S w�wN��*�ҳ��]��㓧 00

0F��� �� 00
0B

00
1E

00
07

00
1D

00
0CCd � 7K �� ��V, �

00
11�ӝ\ 00

04
00
10

00
0B

00
13

00
0C

00
03Nqp|z~�s �=��ȕ1�� � �~ ; �q ?

00
01

00
0E��a�`����0�� s $W!l

p�4� 00
1F

00
1F

00
1E

00
08ғ�� �`� 00

19O�� ֞� 00
18

00
05E ��e�H�qi+��roĽ� � �顧 00

0B�
00
07

00
0COC˙��0"�s�"�.��g� �paB�,(�[Zdz�r�wDT8���

00
1A

00
1B��Y PjT[���<���z&�

00
1F

00
03

00
17

00
7F

00
12

00
13

00
14

00
17�> ��<�\uqF��.gy ��S (# �U �]�Y���h 00

1Bѳ 00
1BJ���V��V��:�� �fP��G Th�B

00
02

00
06Z�p Q��]���� �

00
07

00
06

00
02

00
15

00
14=f�b�� Ug S(*� �� ���#�[2���8h =gI#.# -

00
10

00
02

00
11

00
06���8,-6 i6f� ��n�F;��R��8��nRs_K9!�X � �1"�H� -

00
13

00
1E���js|�YC�a����Z�C�Q�5 l �#�e6�|

�'W(��і�� 00
1A

00
10o�f1 �Ap��K�� �Ճ.� 00

03
00
07

00
0C

00
1C

00
10u� �]K �� �c+a�� |

00
05��G��QO �!

00
19

00
1B

00
07

0B
0E

00
1A

00
0B� '�Eu��; .�%��4 ��V9��5Q�\"��+^ �R�qk�y���

00
11

00
1F

00
1B

00
19.f�u�"��]0N���}Yq/� �kj �-�R��_\l�Q� � �q�����0}

00
12

00
0E

00
1F>{qr])g��!� $ � �GyJ�k�g|PKgVd���.r*-�� 00

0Bϖ(��
00
08

00
1E

00
15

00
02�]8�i�a���&h�Q [�yxcQ>� U� ��tN�,w 00

02۵ ����_ 00
1D

00
1EVz{�+o�R�� !}

+1wo}�OS�y�_z���\��!
00
07

00
11

00
01

00
14

00
13��A���M� I�Ʀ�A�j ��[� 6��t��

00
1C

00
16���̟u� \�n~�� �yЅy�W�2Q�ۦ 00

1E
00
05Z�j6� ���dlC�v�� !

00
08

00
10

00
04

00
01

00
1D

00
0E

00
0C

00
16

00
0E

00
14

00
17�� +Q� _ 2�*�T�Y(� U����sJ 0 �(���E�T($ I �-

00
12

00
11

00
1D

00
0B�c�����('L ���Ps1 o,/�331� �;�j�T\]�g��

00
08e> ,�Oo� 00

15ܑ�� dQ��7�z����o}�2�>`!~�o!
00
0C

00
0C

00
17M`H�qX��h̡G~6C�� �x[/���|�- �>���� �@Q

00
05

00
19��E���� ��#�� ����5(s�ۢ�B��ι�|$ 00

16
00
13tkq�9g�� �oq, �d�|

00
1D

00
08

00
05

00
19

00
19

00
15

00
16

00
1A

00
11��j�&~��=,�<̨ � eONP � e� QE8�0�Cs���l" ���u6] � �IUϣB�M}

00
12

00
03

00
1C

00
11

00
0B

00
0CwLN@�vzFC��)�(9ƘQ � dD~ ��

00
02� Y��h>l�ᘋ 00

1Ae�p0�l�2 �fF�
00
14

00
16

00
11

00
05p u�:�S �� �Tϣ 00

18
00
07

00
02

00
08B����� &��� 4#a0��"t -

00
1E

00
05

00
0F

00
14

00
16

00
1A

00
1D

00
04

00
12

00
0B\@@� �C�(F��c�Mb$ �XH BX�a �c �� x*�WyBV>A$sD� n

�'I�Ԁ 00
1C

00
10r�+��m�: '�z GUT8`00ה

170 00
05

00
16y��PE� ��+w�D�P�̛�U i��!

00
08

00
1A���˧ у]0� �+70[5j��k�*g

00
04

00
1B

00
1D

00
7F

00
0E

00
16

00
1D�{�`4�� �Ě� �V������&W� �m�n�f � �]'�� _� �Z���05

ED#��-|
00
19

00
05

00
0C

00
12

00
02

00
02

00
1B

00
1BV� �y{lQi ��(�n� �u� �Iƌql� �9�E�c�^�

00
7F

00
11

00
01

00
0B

00
0F

00
04

00
15'�>f�\� T� O�)��&��l� 1 ���l�� �U*�� ��$

00
02

00
18

00
06� hn� t ��Q��F%��i��<��m_x`�Ԃ� 00

08I�� k
00
14

2B
75WM�Q#�Y���� k;��>>\�- j��h�FC

F5Z�U���p�ւ� 00
08Y~� 02F

930

00
0F

00
01C � �D05

8D�� 00
0B

00
17C A]� Z UV,���}

00
14

00
15

00
11

00
7F

00
0F

00
06

00
11

00
07< {#���x�6�k�x����I��f��F %�= 48�M� �=' �* �j�B5N� �r.��wF��(���9�

00
1DJ�xU���f��H8"Qv�� gK�>K�̯�=������Y�{�F���}ޕ���

6vN�۳� 00
1AJ8 a[q(�Pud`\v]00

04
00
0F ܁ 00

10
00
0B�

00
17

00
15

00
0B�M.��%��(2�]X��*5z����F� Gd�

00
7F

00
1Dir%ɥ+��kb�o�����N�� � �8�w

00
0F

00
7F

00
7F

00
01

00
0C

00
03

00
1AY�Sp �x� ���E�� ��):w �� (�� |

00
7F

00
0B�Y����P���e� ��o�23��

00
15

00
1F

00
1F

00
13, �Gt���N�� n��Y�g��~�/

00
06���� B��5�{��Mũ.�p��00

ߜ02 00
0E

00
08

00
08Q� rz�� �� r6����)b!

00
11_��*�+���ҭ gy��B�XHjy���C�����f��7�9�?�t����

�u�c00
7Fނ 00

14
00
13h,�˘�p�$���}#� �3=2� ?'ۦ=\

��/ 00
7F

00
16qC�d��� �� ��5�ĺ:����a�0 00

11 ݑ]���^���\��
00
17��>(i��5�9K��� Y�=~v~����Y��b1��

07E
657

00
17�gW�> �͞����R���r�����J}

��P�9 �ڏ 00
1A

00
1F

00
1Ft1�Cc�� 3� ���� n���pk��zgk�n�{�C����C�IHG 00

1BГ� \Ű
�r��>}�|��Ȳ㒍?���_���烍00

7F����?������?
00
17��_������^ 00

0Eͭ 00
14

00
10�mt>��� ��/��g<� � �

00
12

00
1C���w,~D�l9�1;���t�I � ɗ급�) 00

7Ft��Nj��]v� � �a��o�)��
00
08

00
06

00
18�0�W+,r(V�8�{� MH �[�7� y<>� ��7pE�q2�[LΊO~ґO��N8!

�������K��·lP* ہ 00
1E�> ��{Ǆ�4 ����Bs�00ܫ

02
00
08#����@�� �}

00
02

00
01

00
13

00
17� h �� �� KF�d�����'v��F

��Ν� 00
06

00
06T��I� Р�(00

02r] 3�HX`��
00
1F

00
1D:j�b��������� M������z������O�Y��?

00
07

00
15o���P����sQ�����&���& �G�)�_

00
13

00
18

00
02

00
1E#A] W�U�������cu ��� D�����;Z�� -��U Y�Dvm�Sz/

00
05

00
0E

00
1B

00
11&��!tʎR�X���k�H? �h���� � >N(�`-

Wa~���ԥ05
F8�"U��,��4F� 00

10γ� � 00
7F

00
1A

00
16

00
0E

00
10

00
16b �hF�2�� � �Ƚ-

�zU�^ 00
15

00
1B

00
01Ҟ�$��#+�ԑ �8� �e`��gл���� 00

02
00
0Bi��� '�>

)L��N̪�rkV� 00
10ӿ 00

0E� 1��� 00
12D M�uE�Y�뷲

��V�܀��n�'Su)�J�ؓ 00
02

00
1A

F2
0Br 4\��F�ƞ �o6 �D�h�� Y�le,��/�`�

00
0C

00
17

00
16��"R�� xE 案@#أ�

00
13

00
19

00
12

00
0F�by�� Ck�M �&��� �@sI��I2Ku�F�P��� Q��Μ)}

00
1F

00
07

00
02

00
18� ��ӭ 0� 00

04
00
14i ��S�t ���M�3!

k�ܔ� 00
10M��Y��G� =É^�^�"��6���8��%5+��j�q*��I��|

00
0EЊ�{ 00

02
00
1E

00
13

00
06

00
13

00
04

00
10

00
1A

00
13

00
16qb�;�Ɔ ��A �^ �r��a�"�@@� � V�Ka�6 ��l��hBKj�3� ���q������

00
0Ca8��� &H�%է 00

19Ic ѻ 00
12

00
15o� ,�%�}

00
06

00
16�*A�dt` ����q�Z $���ЃI���l�v�MҐ 00

1AN�(�w vܰ���^o�!
00
1B

00
0Fl�njSS��V���9�� �S�}

00
0E�\F*� ݒ 00

1A
00
12Ȭ\���m �b Nl 00

12υ�� ،�0 00
16

00
15i���Z��&[��J���� q� L٢��i�D����BŴ�@�

00
11

00
17

00
1F

00
16�W�� P[����w��M�@�s�Wx]���+I � �� !

00
07@H<� @(+٨� 00

0C
00
10

00
17uU�1*���{�q�$� 91�6�}~��. ���?

00
17

00
7F�h #�X� !���w�4�]��+Z Y�-

00
05

00
1D

00
17

00
01

00
05

00
11Q ���'�B��dn � ��@�va F�1��d��xd�nh�< l�5�z+�x4��Kk7

�$�!!�쳉
00
08

00
1F

00
16

00
17��1P��A�4��>Y H A�`�w �:��3� ۔>#�*��)����9

00
1B

00
01

00
87

00
1B�X^ó0m� ��r �� �1E � �5��

00
04

00
13U�\�Y�O���t����R��7�� �l0J�`� |

00
0CN 00

05 �����~ ߢ 00
19L ͢ 00

1AY�Q<;�� �˜G0004܈= 00
06

00
16h��:�.s A+�\lm� S ^� ߄

00
1A

00
12I O��� � ;� 00

10
00
0ChS�\

00
14

00
7F> l 00

11
00
10

00
0Fե 00

1B
00
11

00
7FO� �m�J�r >�����\7 $ۂ �~ 00

18K5j�12Mqn �[*D?-�|
00
0B

00
1B�g�1��`mqz�� � � 00

03
00
0BЖ�`� C�|d}

00
14

00
0E

00
15

00
19

00
13H#r F���2�� �������� s��ɍ:u�H�- 7 �2�ۜ� 00

01
00
1DZ5��� X& ��}

00
1C

00
1C

00
0C

00
1C

00
13

00
06

00
08�nj ��� '� �<�_ i�l �� �����l J|

00
7F��Fh��"�IC*����O�|

00
04��Ջ+<) �'� 00

1E
00
16

00
03tqx` �����[r�� �C-1:d!

00
07

00
19

00
01

00
0E6� ��P�7�� �� �>� �/<�$ 07B5��g�9��!

00
02

00
18��*�q � 3���7[꽞 00

1A�� y 㢼 00
14v�+M��� u3�����RX}

00
0F

00
18

00
1FG�,B:�{� q]u �:d6xmDyk����@��lY����\��

00
0E

00
02�c��$� �� �d@2j���.f��u5�QX�Ŭ�_�ǟvFTt���8.w}

00
7F

00
0F

00
06

00
1F

00
06

00
07�,�����@� ���1�����v�������� �ǟ���� �� ���� ���� ��u� v �4

00
0B����

���߫��6(7� 00
1E

00
1D

03
8D

00
04

00
05o� 0to6 ĺ�� �A���p6H Q� �4@��9�K����_�4�ïJ���%yȉ���;|

00
1D

00
1D

00
10�M�;� 7K��39 �� �Na>� 00

06
00
0Fմ ;� ;�

00
1C

00
1B�k�o����� L��L�TކԳ�jƆ��KR48�Jаi�(`�կTr�Tf��s��Tn�GSʜ`D��T"�x �`Q� ��N

00
1A

00
0CA�<�Ųi � �4�34�M�P��a�� �͑��1���+

00
06

00
01

00
0E+����*����*����� � b ��x

 Advanced search

Samba's Encrypted Password Support

John Blair

Issue #56, December 1998

How SMB-encrypted passwords actually work, and a walk-through of the steps
required to enable encrypted passwords in Samba.

By default, Samba uses plaintext passwords to authenticate clients who access
network resources. Samba also supports the use of LanManager- and NT-
encrypted password authentication. Using encrypted passwords with Samba
has its advantages and disadvantages. On the positive side, encrypted
passwords mean that plaintext passwords cannot be “sniffed” off the network
when users log in to a Samba share. This is particularly important when users
connect to a Samba server across a public wide-area network, like the Internet.
Furthermore, the latest service packs for Windows 95 and Windows NT do not
allow plaintext authentication to be used when connecting to an SMB server.
When using the latest version of Windows, either Samba must be configured to
use encrypted passwords, or the registry must be edited to enable plaintext
passwords.

On the negative side, using encrypted passwords requires some extra
administrative work. The SMB-encrypted-password algorithm is incompatible
with the standard UNIX encryption method. As a result, a second password file
containing the LanManager- and NT-password hashes for each user, must be
created. If someone makes use of other services on the server, a technique to
keep both password files synchronized will have to be used.

As of Samba version 1.9.18, the best reason to not use encrypted-password
authentication has been eliminated. Previous versions of Samba made use of a
Data Encryption Standard (DES) library to compute LanManager password
hashes. Because it was linked against a DES library, a compiled version of
Samba would be illegal to export from the United States. Strong encryption, like
DES, is still considered a munition by U.S. law. To make it easier for stateside
mirrors of the Samba FTP archive to distribute Samba, precompiled Samba
binaries usually did not contain support for encrypted passwords. Beginning

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

with version 1.9.18, Samba uses a crippled version of DES that is still suitable
for calculating LanManager hashes, but is legal to export from the United
States.

Since the latest service packs to Windows NT and Windows 95 disable the
ability to connect to shares, setting Samba to process encrypted passwords has
become even more desirable. While it is possible to edit the registries on all of
your machines to re-enable the use of plaintext passwords, it is probably easier
to configure Samba to use encrypted passwords.

SMB Password Hashes

There are two styles of SMB-encrypted-password authentication: LanManager
and Windows NT. Both techniques use a file which contains hashed values of a
user's password, not plaintext passwords, just as the standard UNIX
authentication method does. However, each uses its own technique to
generate this hash.

LanManager-style hashes are generated using this algorithm:

1. Convert the password entered by a user to all capitals.
2. Either truncate the resulting password to 14 characters if it is longer, or

pad the password with null bytes if it is shorter than 14 characters.
3. Use this 14-byte value as two 56-bit DES keys to encrypt a secret 8-byte

value twice, creating a 16-byte value. This value is the hashed password
which is stored in the password file. This secret value is a string consisting
of the characters KGS!@#$%.

Unfortunately, this algorithm has a serious weakness. First, the password is
converted to all uppercase before it is hashed. This reduces the number of
possible characters in the password from 95 to 69. However, since most
punctuation characters are also denied, the number of possible characters is
closer to 40. This reduces the actual size of the keyspace from 9514 to about
4014. Further, each half of the password is encrypted independently. This
means that either half of the password can be recovered without recovering
the other half. A better approach would have been to “chain” the two
encryptions together by feeding the output of the first encryption into the
second encryption. This technique is called cipher block chaining. The entire 16-
byte hashed password has a possible keyspace of 2128, or 3.4 x 1038. Not
using cipher block chaining reduces the number of possible hashed passwords
from this value to 2(407) or 3.2 x 1011.

As a result, it is possible to use brute force to crack the LanManager passwords
in a reasonably short period of time. L0phtcrack, from L0pht Heavy Industries
(http://www.l0pht.com/), has been demonstrated to exhaust the keyspace in 62

hours on a quad Pentium Pro 200 SMP box. Since even paranoid users rarely
change their passwords more frequently than every few weeks, systems are
vulnerable to system crackers with more conventional hardware at their
disposal.

In contrast, the Windows NT hashing algorithm is much stronger. The NT
hashing algorithm consists of computing a 128-bit MD4 hash of a Unicode
version of the user's password. Since the password is not truncated and makes
the entire Unicode character set available for use, this technique makes use of
the entire 128-bit keyspace. Unfortunately, for the sake of backwards
compatibility, nearly all SMB servers allow access using either hashing
technique. This means that an SMB server, like Samba, must store both hashes
in its password database. As a result, at least for the immediate future, it
doesn't matter that the NT algorithm is stronger.

The Process of SMB-Encrypted Authentication

The process of SMB-encrypted authentication is the same whether LanManager
or NT encryption is being used. When a client indicates that it can support
encrypted-password authentication during the protocol negotiation stage, the
server will respond with a random 8-byte value known as the challenge. The
challenge is different for each client request. The server stores the challenge
until the client is authenticated or denied access.

After the client obtains the password from the user, it computes the hash value
using one of the previously defined algorithms. The resulting 16-byte value is
appended with 5 null bytes. This 21-byte value is used as three 56-bit DES keys
to encrypt the 8-byte challenge value three times. The resulting 24-byte value is
known as the response.

The server also executes the same algorithm, using the stored hashed
password. If the value the server computes matches the value returned by the
client, the client had to have known the password or at least the 16-byte hash
value generated from the password. As a result, access will be granted as an
authenticated user. Otherwise, access is denied. In either case, a plaintext
password was not passed over the network, where it could be sniffed by an
eavesdropper.

However, there is a snag with using this technique. Unlike the UNIX password
hash, the SMB password hash is a password equivalent. This means that even
though it isn't plaintext, it might as well be. It is the responsibility of the
authentication client to accept a plaintext password and generate a hash
before using it to encrypt the challenge from the server. Unfortunately, a
custom client can be written that, rather than generating the password hash
from a plaintext password, simply accepts a password hash and uses it to

generate the appropriate response to the server. smbclient, a component of
the Samba suite, can be modified to accomplish this task. To sum up, even
though it is possible to crack the LanManager password in a reasonably short
period of time, it isn't actually necessary to gain access to a share if you already
know the password hash. The bottom line is that the Samba-encrypted-
password file and the NT Security Accounts Manager (SAM) both contain
sensitive information. Don't let the fact that it is “encrypted” lead you to believe
that you don't have to protect it from snoopers.

Using Encrypted Passwords in Samba

Configuring Samba to use encrypted passwords is easy—just include this
setting in the global section of your configuration file:

encrypt passwords = yes

Encrypted passwords work with all three security levels: share, user and server.
Setting the security option to user or share requires that the Samba-encrypted-
password file exist. If security is set to server, no further configuration is
necessary, since all authentication requests will be passed off to a different
SMB server. The server security option provides an easy way to integrate a
Samba server into an existing NT domain. However, most installations of
Samba will use user- or share-level security. The most common configuration is
this:

security = user
encrypt passwords = yes

Both the share and the user modes require the smbpasswd file, which contains
the LanManager and NT password hashes for each user who will be accessing
the Samba server.

The Samba-encrypted-password file, smbpasswd, is stored by default in /usr/
local/samba/private. This directory is normally owned by root, with its
permissions set to 500, so that only root can look at its contents. However, this
configuration isn't strictly required—your smbpasswd file can be stored any
place you wish. The Samba Red Hat package stores the smbpasswd file in the
sensible location of /etc/smbpasswd. Wherever the smbpasswd file is stored, its
permissions should be set to 600 (only user read and write) and it must be
owned by root. It must not be possible for any user other than root to read this
file.

Users can be added to the smbpasswd file in several ways. The best way is to
use the smbpasswd -add command. For example,

smbpasswd -add jdblair foobar

will add an entry for jdblair with a password of foobar. When adding a user
while the Samba server is running, this command must be used to ensure that
the smbpasswd file is properly locked before it is modified.

Another way to create a new smbpasswd file is to use the mksmbpasswd.sh
script that comes with Samba. This script is, oddly enough, stored in the /source
subdirectory of the Samba distribution. For example:

cat /etc/passwd | mksmbpasswd.sh > \
 /usr/local/samba/private/smbpasswd

If the system uses NIS, you should use this command:

ypcat passwd | mksmbpasswd.sh > \
 /usr/local/samba/private/smbpasswd

After using the mksmbpasswd.sh script, edit the file by hand to remove root,
bin and daemon just to be on the safe side.

Finally, to allow users to update their encrypted password, set the permissions
on smbpasswd to be setuid root as follows:

chmod u+s /usr/local/samba/bin/smbpasswd

The last problem to note is keeping the smbpasswd file synchronized with the
default UNIX authentication method. If users access the UNIX machine only
through the Samba server, this won't be a problem. However, most systems
also allow users to access shell accounts, pop servers or other services that will
authenticate using the default UNIX password file. Many techniques can help
keep these two files in sync. A hacked version of the passwd command is
available that will update both files at the same time. Many people use expect

scripts to update a user's password, entering both the passwd and the
smbpasswd command after prompting the user for a new password.
Reportedly, a PAM module to handle updating almost transparently is in the
works and may be available by the time this article is printed. Asking on the
Samba mailing list (samba@samba.anu.edu.au) for solutions other people have
cooked up to alleviate this problem can be a big timesaver.

Closing Thoughts

In spite of the lengthy explanation of problems associated with SMB-encrypted
passwords, it is still a good idea to make use of them. Even a slightly half-baked
encrypted-password algorithm is superior to transmitting plaintext passwords
across a network. Keeping the smbpasswd file secure and making sure users
don't choose easily-guessed passwords will help minimize the risks.

John Blair currently works as a software engineer at Cobalt Microserver. When
he's not hacking Cobalt's cute blue Qube, he's hanging out with his wife Rachel
and newborn son Ethan. John is also the author of Samba: Integrating UNIX and
Windows, published by SSC. Feel free to contact him at
jdblair@cobaltmicro.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

X-ISP and Maintaining Multiple Account Records

Chris LeDantec

Issue #56, December 1998

Even for the experienced administrator, X-ISP provides an easy way to manage
multiple accounts, keep track of usage expense and time on-line.

Connecting your Linux box to a PPP server can be a frustrating task, especially if
you are not familiar with the scripting requirements, authentication modes or
network settings your ISP expects you to use. X-ISP, a program written by
Dimitrios P. Bouras (dbouras@hol.gr), takes what could be a complex task and
simplifies it with a clean, effective GUI front end.

What makes X-ISP such a great piece of software? First, it is a user-friendly X-
based front end to PPP/CHAT. Second, X-ISP provides a dialer, xispdial, and a
stripped-down terminal, xispterm, which help work out some of the difficulty in
establishing a connection. By using PPP/CHAT, X-ISP leaves most of the work to
the operating system, while also giving experienced users the freedom to hack
familiar connection scripts for any special needs.

X-ISP can be found at http://users.hol.gr/~dbouras/. To run X-ISP, you need to
have X11R6, Xforms-0.88 and ppp-2.2.0f, and your modem must be set to
verbose mode so that X-ISP can pick up connection status correctly. The home
page provides comprehensive information and screen shots of the
configuration and main screens. Once downloaded, the installation README
gives clear instructions on how to compile X-ISP on a variety of systems.

How Does it Work?

X-ISP adds two helper modules called by pppd (see Figure 1). The first, xispdial,
takes care of the dialing. xispdial sits between pppd and chat and is used by X-
ISP to start the connection. xispdial reads an environment file residing in the
user's directory. After getting the information for the ISP selected, it calls chat
to make the connection. Once connected, control of the modem is turned over
to the second module, xispterm. This terminal program allows the user to log in

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

to the system manually, or in the case that ip-up/ip-down scripts exist, xispterm
runs those scripts. X-ISP also runs user-specific scripts, .xisp-up/.xisp-down,
which reside in the user's directory and provide increased versatility.

Figure 1. X-ISP Functional Layout

A named pipe sends information from pppd, chat, xispdial and xispterm to the
terminal window in X-ISP. The pipe gives immediate feedback as to system and
connection status. The terminal window provides a clean view into the
connection sequence and invaluable information for tracking down any
connection errors.

Setup and Connecting

The user interface provides all actions through five buttons, three pull-down
menus and a drop list for selecting which account to activate. The first step is
setting up an account through the Options menu.

First, open the “Account Information” item. Enter the name of the account to
add, then enter the phone number, user name and password. You will also
need to know which authentication protocol your ISP uses. (See Figure 2.)

Figure 2. Account Information Setup

The next item, “Dialing and Login”, has you set the login and connect
environment. Set the number of retries, connect notification, ISP callback and
login setting. For manual login, X-ISP will start xispterm, or if you know the
sequence, you can put together an automated login script and send user name,
password and any initialization commands to the remote host. (See Figure 3.) X-
ISP will use the connection script for automatic login or ISP call-back. For PAP or
PAP/CHAP-Secrets authentication, the script will be ignored.

Figure 3. Dialing and Login Preferences

“Communication Options” allows you to control settings for the modem, baud
rate, flow control, initialization and reset strings.

Figure 4. TCP/IP Options

The final item, “TCP/IP Options”, sets up Network Addressing. The most notable
point here is the “Support for ip-up/ip-down” scripts. If set to “yes”, the DNS
addressing can be set for each account, providing great flexibility when
maintaining multiple accounts by dynamically updating the /etc/resolv.conf file.
(See Figure 4.) When using ip-up/ip-down, X-ISP sends the ipparam option to
pppd, which passes a string to ip-up/ip-down containing the pipe name for X-

https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f4.jpg

ISP, the description set in Account Information, and if set, the DNS addresses
specified. X-ISP will also display any information from ip-up/ip-down on the
terminal window via the named pipe.

The next menu choice is Logging. If you are located in Europe, you will get the
most advantage of this feature as the telephone companies (TelCo) listed are
applicable only there. By selecting the appropriate TelCo and zone, X-ISP will
keep track of on-line cost.

The Statistics item displays usage data in a window with a text summary and a
bar graph.

The last item is the Help menu. Any issues you come across will probably be
addressed in this very thorough help file. The “about” screen displays the
version number and how to get in touch with the author.

Once your account is set up, you are ready to connect. First, check the following
to be sure the rest of the system is in order:

• Set pppd for all users (i.e., other than just root):
 chmod u+s /usr/sbin/pppd

• Check the permissions on all X-ISP modules (xispdial, xispterm ...) so that
group root can execute them (this should be done by the install script):

 chmod g+x

• Add any users who will use X-ISP to the dialout or root group for Debian
or Red Hat releases, respectively.

Now, to connect, click on the “Connect” button in the main window of X-ISP. You
should see the connection feedback in the small terminal window to the right.
(See Figure 5.) Once the connection is established, the status windows will
report the assigned IP address, modem connect status, connection speed and
time since connected. The status is updated every 15 seconds, so if your
connection is dropped, a maximum latency of 15 seconds will pass before X-ISP
recognizes the dead connection and allows you to reconnect.

Figure 5. Main Window, Establishing a Connection

Hopefully, everything now works correctly. If there is a problem, the terminal
window in X-ISP should give you an indication of where to look.

Security Issues

As with any program that allows users to connect or disconnect the system to
or from a network, security concerns must be addressed. The areas of most

https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f5.jpg

concern to me are the entering of account passwords at setup time (not dial-up
time) and the transmission of authentication data.

X-ISP saves all account information in the .xisprc file in the user's home
directory, including user name and passwords for the accounts. The rc file is
readable only by the owner, so as long as there has not been a breach of the
user's security, there should be no problem. As a secondary line of defense, X-
ISP encrypts the password in the rc file using encrypt(3). The key used to
encrypt the rc file is scrambled to remove any visibility in the binary. Since the
encryption key resides in the source code, the possibility exists that someone
could come up with the key and decode a user's rc files. Therefore, it would be
best to change the encryption key in the source code before compiling X-ISP.
The documentation outlines the procedure for changing the encryption key.

For PAP authentication, X-ISP calls pppd with the +ua option. PPPD version 2.3
no longer supports the +ua option, so if you are using that version of pppd, the
PAP authentication mode will not be available. X-ISP creates a temporary file
with login details in the user's home directory before calling pppd during a
connect request, then removes the file as soon as the connection is
established. This prevents any plaintext files with login details from sticking
around. For PAP/CHAP-Secrets login, the appropriate files must be edited aside
from X-ISP.

A potential liability may occur since X-ISP requires the user to be a member of
the root group. Two remedies exist: either create a new group for X-ISP and
add appropriate permissions to the program and data files, or use sudo.
Creating a new group and adding users and files to it is probably the most
straightforward way to tighten security on X-ISP. However, by allowing users
access through sudo, the system administrator can allow the use of X-ISP
without creating a new group or adding users to the root group and still
maintain security integrity.

What's to come?

This should give you a good start with X-ISP, as well as a little insight into how it
works. In the next release of X-ISP, a PTT editor will enable users to add entries
to the TelCo database. The PTT information editor envisioned for X-ISP version
2.4 enables editing of all tariff rules for PTTs known to X-ISP, and also adding
your own PTT information through a versatile GUI interface. The fields of the
editor pop-up window shown in Figure 6 are the result of analyzing the PTTs
currently known to X-ISP (version 2.3p7) plus a handful more which haven't yet
made it into the distribution.

Figure 6. Information Form (under development, courtesy of Dimitrios P.
Bouras).

https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2856f6.jpg

Chris LeDantec is a Computer Engineering undergraduate at the University of
Arizona. Aside from Linux, his passions include skiing, the Grateful Dead,
philosophy of mind and National Parks. He may be reached at
ledantec@engr.arizona.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in Banking

Idan Shoham

Issue #56, December 1998

Mr. Shoham tells us how his company set up an Internet banking system using
Linux for a bank in Western Canada.

M-Tech is a computer security products and services company based in
Calgary, Alberta, Canada. This article describes our experience developing an
Internet banking system for a major financial institution in Western Canada.
Since it discusses the computer security infrastructure of this organization, they
have asked that we not name them explicitly here. The system is now in
production, and allows thousands of users to make financial transactions on-
line.

This article will describe:

• What components are needed to build an Internet banking system
• How Linux made developing the Internet banking system easier
• The deployment of Linux servers as key components of the final system

What is Internet Banking?

Internet banking may be defined as any system that gives customers of a
financial institution the ability to execute financial transactions across the
Internet. Since the connection between the customer and the financial
institution is electronic, we are limited to transactions that do not require the
exchange of money or documents. What remains are the following:

• Funds transfers
• Account balance and history inquiries
• Bill payments
• Loan applications
• Retrieving information about services, branch locations, etc.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Sending feedback to the financial institution

While a given Internet banking system might not support every one of these
features, it is possible to implement any of them. Internet banking is basically a
user-friendly, secure and distributed user interface to existing banking systems.
With this in mind, we were hired to do the following:

• Design and deploy a network and application infrastructure to support
the new application.

• Help implement a WWW-based user interface in Java.
• Help integrate the new system with existing business logic in our

customer's mainframe.

Functionality

As outlined earlier, the Internet banking system must be able to support any
transaction type where an exchange of physical items (such as cash) is not
required. Since the set of possible transactions will evolve, it should be easy to
extend the system to support new transaction types.

User Interface

The application is intended for use by thousands of users, many of whom have
limited experience with computers. Accordingly, the user interface should be
suitable for people whose computer skills consist only of having access to a
computer, knowing how to start a WWW browser and how to type in a URL.

Additional requirements for the Internet banking system we were hired to
construct are:

• Different groups in our customer's organization must be able to easily
implement different user interfaces to the application with different
graphics, advertising and menus.

• Our customer must be able to customize and extend the system's
functionality in the future.

Security

By far, the most important feature of an Internet banking system is that it
should do no harm. In particular, the system must ensure that:

• The existing “backend” (a mainframe used to process transactions) should
be invulnerable to attack. Most importantly, it must not be vulnerable to
denial-of-service attacks.

• A third party, connected to the network somewhere between the user on
the Internet and the Internet banking system on our client's network,
should find it impossible to decipher or alter the communication between
those points.

• Users should be authenticated using as reliable a mechanism as
economically feasible.

As a general rule, the system should be as safe, both for the user and the
financial institution, as transactions made by the user in a bank branch.

Hardware

When deployed, the system consists of four physical components:

1. Client workstations, which include a WWW browser with Java and SSL
capabilities

2. One or more firewall systems to protect the Internet banking servers
against external assault

3. One or more application gateways: the Java user interface applet is
downloaded from these and must communicate with the backend
through them.

4. A backend transaction processing system: for most financial institutions,
including our customer, an IBM mainframe is used.

Networks

There are three conceptual network segments between these hardware
components:

1. The Internet between the client and an external firewall
2. Network-1 between the external firewall and the application WWW server
3. Network-2 between the application WWW server and the mainframe

This arrangement is illustrated in Figure 1.

Figure 1. Linux in the Loop

A Robust Development Environment

In developing our customer's Internet banking system, we first deployed a
Linux-based development environment consisting of a Compaq Prosignia
server, 64MB of RAM and a pair of 4.3GB Ultra Wide SCSI disks. We installed a
Debian Linux distribution on this system. On the platform we installed a wide
range of tools, shown in Table 1.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2927f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2927f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2927f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2927t1.html

We used this setup as our primary development environment. Using Apache-
SSL, we were able to test various browsers to check the application's behaviour
and to adjust its appearance.

Using some customized Makefiles and libraries, we were able to write Java
client code, C-language CGI and daemon programs, C-language mainframe
programs and COBOL program stubs all on this environment.

By implementing an RPC system, where a code generator translates a master
transaction-description file into source code for each target platform, we were
able to add new transaction types to the Internet banking application with just
a few short commands.

Network Security

To secure the final system against denial-of-service, eavesdropping and
impersonation attacks, we used Linux to implement an external firewall. Since
our access control rules are simple and static, we were able to use the Linux
kernel's built-in packet filtering features to limit remote access to just the
minimum required services—DNS and HTTPS.

As a further precaution against unauthorized access, no system on the Internet
can connect to our customer's mainframe without first passing through our
application code. There is simply no path for network packets from the Internet
to the mainframe. Our application system cannot connect to any computer
other than the mainframe; this minimizes the exposure of other systems on
our customer's network.

To ensure private communication, we use the SSL protocol, embedded in
HTTPS, to protect the communication between the application WWW server
and the client machine. We also do not entirely trust the physical connection
between the application WWW server and the mainframe, so all
communication between our application on the WWW server and our
transaction management software on the mainframe is encrypted.

Finally, since users are likely to log in and walk away from their terminals, we
implemented a token management system between the client Java applets and
the mainframe, where tokens have an implicit timeout of a few minutes.
Unattended sessions look exactly like attended ones on the client's machine,
but are blocked from making new transactions.

Redundancy and Availability

An important concern in a live system of this magnitude is the possibility of
down time, caused by power outages, hardware failures or high load. Our

system is protected against power outages by uninterruptible power supplies
(UPSs). In addition, we implemented two identical application servers, each of
which serves as both a DNS and an application server. One system is
configured as the primary DNS, and the other is the secondary DNS. If the
primary should fail, DNS queries will cause clients to connect to the secondary
system instead.

Finally, all connection-state information is stored in a database on the
mainframe. Since the application servers are stateless, consecutive transactions
can be routed through an arbitrarily large number of application servers, all
operating in parallel. And since the application servers are PCs, we can scale the
system up to handle an arbitrarily large amount of traffic simply by buying
more PC servers, along with an intelligent router.

An Open-minded Customer

To take full benefit of Linux's technical advantages, however, our customer had
to be open-minded. We have been fortunate to work with this customer, since
they judged the merits of this architecture on the grounds of its reliability,
features, extensibility, maintainability and cost. We are convinced that the
implementation team's open-minded approach to technological alternatives
allowed them to implement the best possible solution, rather than just the
same technology as their competitors.

A Mature Development Environment

We have used Linux as a development platform before and chose it because of
the rich set of tools included with most distributions. This project held no
surprises—Linux was a convenient, productive and reliable development
platform. We never had problems with any of the development tools, and never
experienced system downtime.

In the past, we have developed software for Windows NT as well as for other
UNIX platforms. Linux compares very favorably with these as a development
and deployment platform—it is simply more full-featured and better
supported.

A Robust Production Platform

Linux is proving its worth as a production environment as well. It runs on
inexpensive hardware and, along with Apache SSL, offers excellent WWW
server performance. We would be hard-pressed to find comparable systems on
which to run our WWW servers, development environment and firewall without
spending much more money and settling for a less comprehensive tool set.

In this project, the rich set of network features found in Linux proved especially
useful. In particular, the following:

• Setting up the firewall was simple, and the resulting system is quite
effective.

• Our development server uses ssh for secure remote connections, the X
Window System for convenient access to source files and tools, and
Samba to allow developers to access files directly from their PCs.

• BIND made it easy to implement a failover from the primary to a backup
server.

• Various shell tools make it easy to keep the software on the backup server
current.

Linux is not only feature rich, but also well-supported. We have found that
whenever new security exposures are discovered, Linux is invariably the first
system for which patches or workarounds are available. For instance, the ping-
of-death vulnerability was reportedly fixed in three hours, and a Linux patch for
a common buffer-overrun vulnerability was released alongside the discovery of
the bug itself. We doubt that any vendor could match the response time of the
worldwide community of Linux programmers.

An Open Future

In this project, we built just one application—a user interface with which our
customer's clients can make financial transactions. However, there is nothing
about our technology that is specific to the Internet or even to banking.

Within our customer's organization, the same technology could also be used to
enable thin clients to function as teller workstations, process loan applications
and support communication with automated teller machines and telephone
voice response systems. Beyond the financial sector, this technology could be
used for any transaction processing system with a broad or geographically
distributed user community. Examples include travel booking systems, libraries,
government registries and more.

References

Postscript

https://secure2.linuxjournal.com/ljarchive/LJ/056/2927s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/2927s2.html

Idan Shoham is one of the principals of M-Tech. To learn more about M-Tech,
please visit the company's site at http://www.m-tech.ab.ca. Mr. Shoham can be
reached via e-mail at idan@m-tech.ab.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Preventing Spams and Relays

John Wong

Issue #56, December 1998

The smtpd package is a useful mail daemon for stopping spam, thereby saving
money and resources.

The Internet has been around since the 1970s with people using it mainly for
electronic mail (e-mail). This is still true even today as we see increasing
numbers of multimedia-based applications on the Internet. People still use e-
mail more than web browsers and file transfer programs. The reason is simple
—it is a low-cost yet effective method for communicating with others all over
the world. More and more people are getting onto the Internet, and the first
thing they do is get an e-mail address.

Realizing this, certain individuals and even organizations have taken the
opportunity to send unsolicited e-mail to Internet users. Most of this mail is
commercial advertising. They send thousands of copies of the same message
to a list of e-mail addresses obtained from either Usenet postings or
companies' home pages. Such action is called spamming.

The consequence of spam is that the receiver ends up paying for the cost of the
e-mail, since the ISP (Internet Service Provider) usually charges on the basis of
connect time and downloading mail takes time. At companies where each
employee has an e-mail address and the company has a fixed line for e-mail,
that line can become quite expensive if it is targeted by spammers.

To hide their identity, spammers usually send from a forged e-mail address and
use mail servers that have not been configured to prevent such activities.
Relaying, as it is usually called, will cause the targeted e-mail server to send mail
on behalf of the spammer to hundreds or even thousands of users. Spamming
can seriously affect the performance of the mail server and cause massive
bandwidth loss for the company affected. Not only will the mail server's
performance be affected, but recipients of the spam will be given the
impression that the company is in business with the spammer.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

For more information on this, visit the number one anti-spam site on the
Internet at http://spam.abuse.net/.

The smtpd Package

My company was recently the target of a spammer who used our mail server as
a relay. The spammer was using an account from a well-known service
provider, and my guess is that it was probably a trial account. I had not installed
any preventions against such attacks and was thus targeted. When I discovered
the attack, I dropped all my current work and began searching for a solution. I
started by looking at the Sendmail home page (http://www.sendmail.org/). It
had links that led to more tools and tips for spam prevention. I chose to
implement the solution based on the smtpd package from Obtuse Systems
Corporation for the following reasons:

1. smptd is a small package with only two executable files to manage and
one configuration file to tweak.

2. It works nicely with my mail server (Sendmail v8.8.8).
3. The configuration file is very flexible and easy to configure.

As of this writing, the smtpd package is at version 2.0 and can be obtained from
ftp://ftp.obtuse.com/pub/smtpd/smtpd-2.0.tar.gz.

smtpd works with other MTAs (Mail Transport Agent), but I have been using
only Sendmail. The latest Sendmail can be retrieved from ftp://
ftp.sendmail.org/ucb/src/sendmail/sendmail.8.9.1.tar.gz.

Note that you must have a working MTA before installing smtpd. It acts only as
a mail proxy, storing and forwarding mail to other MTAs for the actual delivery.

Briefly, here's how smtpd works: the smtpd daemon runs and accepts mail
instead of your regular mail server. It accepts mail from the Internet as well as
your own domain. smtpd can be configured to reject mail based on several
criteria:

1. IP address of the sender
2. Host name or domain of sender
3. E-mail address of sender
4. E-mail address of receiver

Based on the configuration file, the mail is either rejected or accepted and
spooled. The second program, smtpfwdd, will do the actual forwarding of the
spooled mail to the MTA (Sendmail in this case).

Compiling and Installing the Package

Once you've obtained the package, unarchive the files to a directory. Assuming
the files are to be put in the directory /usr/src/smtpd-2.0, do the following:

cd /usr/src
tar xvzf ~/smtpd-2.0.tar.gz
cd smtpd-2.0

Now, by typing ls, you'll see many files and subdirectories. Be sure to read
README and INSTALL as these files contain valuable information on the
installation of the mail proxy.

To compile the package, do the following:

1. Choose a user and group for running the smtpd daemon. Your choice
must be defined as a trusted user in the sendmail.cf file. I chose to use the
user daemon. If you are not sure what to use as trusted user, check the /
etc/sendmail.cf file for lines like this:

Trusted users
Troot
Tdaemon
Tuucp

In this example, the trusted users are root, daemon and uucp. Do not use
root. smtpd works without any root privileges; thus, it is more secure to
run it as some other user.

2. Create a directory in which smtpd can store spooled mail before
smtpfwdd processes it. Change permissions and also the user/group of
that directory so only that user has full rights to it. If you put it in the /
home/smtpd/spool directory, execute these commands:

mkdir /home/smtpd
mkdir /home/smtpd/spool
chown -R daemon.daemon /home/smtpd
chmod 700 /home/smtpd
ls -lad /home/smtpd

The output from ls will look like this:
drwx------ 3 daemon daemon 1024 Mar 26 01:34
 /home/smtpd/

3. Edit the Makefile in the source directory to reflect your choice. The
changes we need to make for our example are as follows:

SMTP_USER = daemon
SMTP_GROUP = daemon
SPOOLDIR = /home/smtpd
SPOOLSUBDIR = /spool
EHLO_KLUDGE=1
JUNIPER_SUPPORT=0
#LD_LIBS=-lresolv
CHECK_IDENT = 0

EHLO_KLUDGE is needed to fix a bug in Netscape Communicator.
JUNIPER_SUPPORT is set to 0 unless you're using Obtuse's Firewall Kernel.
LD_LIBS is commented out, as my Linux distribution does not require the
external library libresolv. CHECK_IDENT has been set to 0 to disable IDENT
checking. I personally do not believe in IDENT checks—they take time and
do not return any useful information.
By default, the Makefile has been configured to be compiled on Linux, so
no other changes need to be made.

4. In the source directory, type make to compile smtpd and smtpfwdd.
5. Once the compilation is finished, you will find two executable files in the

directory. Copy them to another location in your PATH. To copy them to
the /usr/local/sbin directory, type:

cp smtpd /usr/local/sbin
cp smtpfwdd /usr/local/sbin

6. Create a few subdirectories under the /home/smtpd/ directory by typing:
cd /home/smtpd
mkdir etc usr
mkdir usr/lib
mkdir usr/lib/zoneinfo

Because smtpd does a chroot to the directory /home/smtpd, we need to
copy (or make symbolic links) into this directory some files that are
required for the proper execution of smtpd/smtpfwdd. The files and the
directory in which each should be located are:

◦ /etc/resolv.conf -> /home/smtpd/etc/resolv.conf
◦ /usr/lib/zoneinfo/localtime -> /home/smtpd/usr/lib/zoneinfo/

localtime
The file resolv.conf is needed so that smtpd can do DNS queries (look up
IP addresses of hosts). The file localtime has your time zone setting and is
required to put the proper time stamp on e-mail. The location of localtime
may be different on your system, so you'll have to find the exact path and
create a duplicate under the /home/smtpd directory.

7. Configure smtpd and smtpfwdd to replace the running mail server.

Configuring smtpd

The mail proxy reads its configuration from a file (smtpd_check_rules) in the /
etc directory, in our example, /home/smtpd/etc/smtpd_check_rules. Each line in
the file beginning with a # is a comment. Blank lines are allowed. Rules have
the following format (one line):

[allow|deny|noto]:SourceList:FromList:ToList[:XXX message]

where XXX is the error message number. The first rule that matches will be
taken and the check ended, so placement of rules should be done carefully.

The first field states the action to either allow an SMTP connection, deny the
SMTP connection and close the session or noto which will return an error for
the matching rule but will still continue for the session.

The second field is a list of IP addresses and/or host names to match the source
SMTP connection. IP addresses may be specified with a netmask to include a
whole network. The format of this is XX.XX.XX.XX/bits where bits is the netmask
bits for the network. For instance, a network 192.168.0.0 with netmask
255.255.255.0 would be written as 192.168.0.0/24. A few special reserved
identifiers that can be used are:

• ALL: any IP address and host name
• KNOWN: only IP and host names which are DNS resolvable
• UNKNOWN: IP and host names which are not DNS resolvable
• EXCEPT: exceptions
• *: wild-card character

The third and fourth fields are used to match e-mail addresses and have the
format user@host. The special word ALL can also be used in these fields.

The fifth field is optional and is used to return error messages from deny and
noto to the SMTP client. The following special variables can be used to return
information in the error messages:

• %F: mail from address
• %T: recipient address
• %H: connecting host name
• %I: connecting IP address
• %U: user from the host

All three fields (SourceList, FromList and ToList) must be matched in order for
action to be taken.

Listing 1 is an example of a set of rules that assumes the internal network is
10.0.0.0 and a mail hub is at 10.0.0.9. Note that noto_delay will pause for a
certain amount of seconds before action is taken. This option was introduced
to delay relayers and spammers and the parameters that control this timeout
are set in the Makefile:

NOTO_DELAY = 60
DENY_DELAY = 60

A few other configurations can be done that I have not shown here, namely the
NS= pattern-check and the use of the IDENT protocol for identifying users.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2948l1.html

Users who need a more detailed setup of this file should read the file
smtpd_address_check.txt in the source directory. Examples for filtering spams
and relays can be downloaded from Obtuse's FTP site.

Running smtpd

After creating the configuration file, the running mail daemon must be stopped
and replaced with smtpd/smtpfwdd. For Sendmail, this can be done by typing:

> ps ax | grep sendmail
24569 ? S 0:00 sendmail: accepting connections on port 25
> kill 24569

This will effectively shutdown the mail daemon. Now, check for queued mail
that the daemon has not yet sent out by issuing the command:

/usr/lib/sendmail -bp

If the mail queue is not empty, flush the queue by typing:
/usr/lib/sendmail -q

If mail is still in the queue after awhile, this command can be resent at a later
time so the installation of smtpd/smtpfwdd can continue. No new mail will be
accepted while the mail daemon is down.

Start the smtpd daemon by issuing the command:

/usr/local/sbin/smtpd -c /home/smtpd -d /spool\
-u daemon -g daemon -D
-L

The smtpd daemon will start accepting mail and spool it to the /home/smtpd/
spool directory. The parameters on the command line are defined as follows:

• -c /home/smtpd: the smtpd home directory
• -d /spool: the directory where spooled mail should be stored
• -u daemon -g daemon: user/group smtpd
• -D: instruction to run as daemon and listen on the SMTP port
• -L: instruction to suppress children in daemon mode from making an

openlog call

Once smtpd is running, check the directory—it will be full of files with the prefix
smtp. These files are the spooled mail messages and need to be processed by
the MTA. This is the job of smtpfwdd. We run smtpfwdd by typing:

/usr/local/sbin/smtpfwdd -d /home/smtpd/spool -u\
daemon -g daemon

Once it begins running, smtpfwdd will check the spool directory /home/smtpd/
spool and starts processing the spooled mail by running the MTA, in this case
Sendmail.

A good idea is to run the MTA in such a way that it periodically processes its
mail queue and sends out any mail present. Note that we actually have two
spool directories here: one used by smtpd and the other by sendmail (usually
in /var/spool/mqueue). To run sendmail in non-daemon mode in order to
process the queue every 15 minutes, type:

/usr/lib/sendmail -q15m

Once everything is running fine, edit your startup files to run smtpd/smtpfwdd
by default instead of sendmail.

Summary

The Internet is no longer the “friendly global village” we once thought it was.
Living among the netizens are unscrupulous individuals and even companies
that take advantage of the openness of the Internet for their own benefit while
making others bear the cost. We must take preventive measures against these
attacks if we want to avoid becoming victims. Proper policy on the e-mail server
will help to ensure this. With smtpd in place, you will have more control of your
e-mail server.

John Wong can be reached at johnw@extol.com.my.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Mathematica v3.0

Patrick Galbraith

Issue #56, December 1998

Instead of having various packages or tools for a variety of mathematical
functions, Wolfram has integrated them all into one package.

• Manufacturer: Wolfram Research

• E-mail: info@wolfram.com

• URL: http://www.wolfram.com/

• Price: $1,495.00 US

• Platform: Caldera OpenLinux 1.2, i486/100, kernel 2.0.33, ATI Mach32
video

• Reviewer: Patrick Galbraith

About three years ago, I was taking various math courses—different levels of
calculus and differential equations. I actually enjoyed both, finding them a
constant challenge to master. At that time, I was also working on mastering
another exciting puzzle—Linux. Back then, there weren't a lot of commercial
applications or even books on Linux. I had just spent a whole night
downloading and copying to floppies, and migrated from Sunsite to ordering
the InfoMagic set and printing out all the FAQs and HOWTOs I possibly could. I
also had to maintain a MS Windows/DOS partition to run my math software,
which was then Maple V. I wasn't happy to have to reboot to use the software,
but when projects requiring Maple were due, I had to do it.

Today, many commercial products are available for Linux. One of them is
Mathematica, a full-featured, powerful, math lover's paradise. I would have
loved to have had it three years ago.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Recently, I had the privilege of reviewing this product and will look at as many
features as possible in such a brief forum.

What is Mathematica?

Wolfram states, “Mathematica is the world's only fully integrated environment
for technical computing.” Instead of having various packages or tools for a
variety of mathematical functions, Wolfram has integrated them all into one
package. For this review, I tested the mathematical capabilities and ease of use
of this integrated package, using the many math examples given in the huge
book by Stephen Wolfram that is included with the package.

There is no limit to the things one can do with Mathematica; each would take
an entire book in itself to review. I will stick to simple uses here, and keep the
beginner in mind.

Package Contents

Mathematica comes in a big box that includes the following:

• The Mathematica Book by Stephen Wolfram, which is 1403 pages of
excellent examples, applications and colorful illustrations of Mathematica
in action.

• Getting Started Guide
• Standard Add-On Packages Book
• Mathematica System Administrators Guide
• License Certificate
• Installation media on CD

Installation

The installation of Mathematica was quite smooth. The installer is a simple shell
script that asks various questions, such as directory and program password.
The password can be obtained at Wolfram's web site upon product registration
and is required in order to have a fully functioning program. Other options for
registering are via fax or mail. The registration links the copy of Mathematica to
the host name on which you are installing. Once the installation is performed
and the password obtained and included in the installation step that asks for it,
you can begin using Mathematica. It is possible to install the password at a later
time, but you will be able to run in MathReader Mode only.

Usage

There are two ways to run Mathematica: via X, using the notebook and palette
window (see Figure 1) or via the command line. The benefits of using the

notebook and palette are the point-and-click interaction and the ability to save
each session as a worksheet.

Figure 1. Palette

The benefit of the command line is quick computations. Note that graphics are
a separate process. If you are running from the command line in an xterm, any
graphics you generate will go to Mathematica's graphics output window. If you
are running from a virtual terminal, the graphics will be plain ASCII.

The language to interact with Mathematica is quite simple and intuitive and
also well-documented. If you have any rudimentary programming experience, it
will be even easier to use. When using the worksheet window, it checks syntax
and gives a system bell if you use the wrong type of bracket.

The first two examples of this are plotting (sin 1/x2)(e-x) (Figure 2) and power
series (Figure 3):

Figure 2. (sin 1/x2)(e-x)

Figure 3. Power Series

I was running the equations in Figures 2 and 3 on a 486/100, and all of the
computations ran quite fast.

More Advanced Computations

One of the major parts of one math course I took was power series. One such
equation done with Mathematica is shown in Figures 4 through 6.

Figure 4. Differential Equations

Figure 5. Integration

Figure 6. Graphical

This is just the tip of the iceberg in regard to the many mathematical equations
you can perform with Mathematica. You can also program Button Boxes to
perform specific actions when you click on them. This option enables you to
create interactive worksheets (see Figure 7). Other capabilities include sound,
animation and transforming input files (such as an image file) or external
sounds. Mathematica's language can be used to read in files, output to files,
read directory contents (explicitly and type-globbing), change to a different
working directory and delete files, all of which I found to be quite useful. Any
programmer will appreciate the Mathematica feature that converts a

https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f6.jpg

Mathematica expression to a C or FORTRAN expression—an extremely useful
feature (Figure 8).

Figure 7. Worksheet

Figure 8. Conversion to C and FORTRAN

External Functions

Mathematica has an external function which converts Mathematica worksheets
to HTML or TeX.

I tested the HTML conversion, and it basically produced an HTML document
with links to images containing all of the worksheet contents, both text and
graphics (see Listing 1). Output from Mathematica can be sent to an external
file, or one file can be combined (spliced) with another. External commands can
be launched from Mathematica, e.g., to start Netscape or any one of the
various word processing packages.

Conclusion

Mathematica is an excellent tool with limitless features. I was impressed at how
smoothly it ran with both Netscape and StarOffice running at the same time. I
truly wish this had been available when I was in school, not only because it is
available for Linux, but because of all the useful features and the fun I have
using it. I like the flexible language Mathematica uses, and the documentation
is excellent. I found The Mathematica Book to be full of great examples and
explanations on usage. Best of all, it runs on Linux and takes full advantage of
Linux's speed, both in computations and graphics rendering.

Users of this product could be engineers, scientists, chemists, teachers,
students and general math enthusiasts. I highly recommend Mathematica to
anyone who is involved in the sciences. This is one tool you will always find
invaluable, and it is well worth the price.

Patrick Galbraith currently works as a senior software developer for the Cobalt
Group in Seattle, WA (http://www.cobaltgroup.com/), developing automotive
web sites using Linux/Perl/Oracle. He also consults with Horvitz Newspapers,
his previous employer, publisher of local area newspapers including Eastside
Journal, South County Journal and Tennessee-based The Daily Times (http://

https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2213l1.html

www.eastsidejournal.com/, http://www.southcountyjournal.com/, http://
www.thedailytimes.com/). The rest of his time is spent doing yard work,
cooking, hiking, tweaking his Linux system, and reading slashdot.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Happy Hacking Keyboard

Jeremy Dinsel

Issue #56, December 1998

According to PFU America, the keyboard's design makes it easier for
programmers to reach the keys they want quickly and efficiently.

• Manufacturer: PFU America Inc.
• E-mail: hhkb-support@pfuca.com
• URL: http://www.pfuca.com/
• Price: $229 US for keyboard including 3 cables, $189 with one cable option
• Reviewer: Jeremy Dinsel

The Happy Hacking Keyboard is a cute and fuzzy streamlined keyboard
designed specifically with programmers in mind. While not a single bit of fuzz is
actually on the keyboard, its size makes it cute, if not disorienting, to people
used to the standard IBM PC keyboard.

According to PFU America, the keyboard's design makes it easier for
programmers to reach the keys they want quickly and efficiently. They claim
having fewer keys on the keyboard increases efficiency by preventing users
from overextending their fingers on certain keystrokes.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Installation

The Happy Hacking Keyboard arrived in a tiny box shortly after I agreed to do a
review of the product. Inside were the keyboard and three cables (for a PS/2,
Macintosh and Sun computer) along with the usual manual and warranty
information.

PFU America recently changed the package, and lowered the price. The Happy
Hacking Keyboard now comes with only one cable (of the customer's choice),
but additional cables are available for $35.00 each. The cables are expensive
because they are handmade by the people at PFU America.

The manual was fairly straightforward—after all, almost everyone knows how
to hook up a keyboard. However, with the many cables that accompanied the
keyboard, it was comforting to know that documentation was available should
it be needed.

After the computer was powered down, I said goodbye to my 101 Enhanced
keyboard and hello to blissful days of Happy Hacking. Or so I thought—I had to
grab a PS/2 to AT keyboard adapter first.

Life is a Series of Adjustments

The keyboard is streamlined, containing only 60 keys. A function key is included
that can be used in combination with other keys; as a result, awkward finger
positioning is sometimes required. My first days using the keyboard reminded
me of playing Twister and trying to reach the red dot by squeezing my arm past
two opponents while keeping my feet on the orange and blue dots on opposite
sides of the mat. In fact, two weeks later, I was still finding myself reverting to
my old PC keyboarding habits. Some complex key sequences were hard to
complete correctly, as old habits die hard.

Also, in the beginning, the backspace key didn't work; however, this turned out
to be primarily my fault. Being lazy and excited to test out the new keyboard, I
refrained from reading all the way through the manual to the final (third) page
where a table and accompanying figure would have taught me how to program
the keyboard using a slider switch. Eventually, I toggled the switch and had the
backspace key working to my satisfaction.

Since I started using Linux before Windows 95 was introduced (I stopped using
MS products long before that), I did not miss the extra “Windows” keys found
on most PC keyboards. I did, however, have to get used to console cruising with
the new keyboard. Switching from X to the console requires a four finger/key
combination (ctrl-alt-fn-f*, where fn is the function key), while cruising through
consoles requires a three finger/key combination (alt-fn-arrow-key).

Even in a non-vi-type editor without command mode movement keys, the
Happy Hacking Keyboard makes the user adjust to finding the location of the
arrow pad and remembering to hit the function key. In all fairness, it took me
less than a week to become oriented with the key locations. (It does remain
comical to watch others try to wander through the key selections for the first
time.)

Unlike a laptop, the size and shape of the keys are the same as on a PC
keyboard, making it easier to adjust. I never overreach the true location of the
keys and don't have a difficult time typing something on other people's
computers (who don't have a Happy Hacking Keyboard). However, I am now
known to complain about how “weird” other keyboards are.

Happy Hacking

While the keyboard did not cure me of my sarcastic nature, I did find the
escape key much easier to reach since it's located to the immediate left of the
“1” key. In vi, I can quickly switch out of insert mode since I never have to look
down to relocate the escape key or reposition my fingers afterwards; thus,
cruising through vi has become even easier.

For XEmacs programming, the control key is located in the “right” place, directly
left of the “A” key. This makes it easy to use without any odd movements or
taking your fingers away from the home row. (Yes, I learned to type before I
learned to program.)

Both of these key locations, escape and control, have allowed me to quickly
negotiate commands without having to reposition my fingers. This has the
benefit of reducing the frustration of trying to return to the home keys after
each command—my fingers never wind up in odd locations as they did on a
typical PC keyboard.

Disgruntled Gamer

As a part-time game player (Linux Quake), I'm accustomed to using the
keyboard for all player movements, such as turns and running. With this
keyboard, I'd have to hold the function key down constantly (to select the arrow
keys) or figure out how to use the mouse. Otherwise, keeping the function key
depressed (two keys away from the arrow keys) and trying to fumble around
with the arrows might increase the probability of developing carpal tunnel
syndrome.

After a few games of Quake, I think I'll be comfortable with the bizarre fingering
required. Also, using the keyboard to program in XEmacs helped in the
adjustment needed to get into the gaming world.

Technical Support and On-line Documentation

Documentation is also available on-line. While I haven't had to use their tech
support e-mail, it is readily available—my contact at PFU America was quick to
reply to any e-mail I sent. Furthermore, all of the information needed to install
and hook up the keyboard can be found on-line. All of the information in the
manual is included in their on-line documentation.

In Closing

Overall, I would be hard-pressed to sum up this review with anything but a
positive remark. With the price tag recently dropping by $40, the keyboard is
more affordable. I'm sure other hackers will be quite happy to own it.

For someone who hasn't experienced the keyboard, it's hard to believe
everything reported about the Happy Hacking Keyboard by PFU America. In
fact, I was skeptical about the remarks I had heard before I became a Happy
Hacking Keyboard user. Now, one month after laying my fingers on it, I can't
imagine using any other keyboard. I wonder if PFU America makes a Happy
Hacking tote bag.

Jeremy Dinsel is an almost-graduate of California University of Pennsylvania,
where he studies computer science and operates the Math and Computer
Science Linux server. He welcomes questions and comments and encourages
western Pennsylvanians to join WPLUG—a Linux organization (http://
sighsy.cup.edu/~dinselj/wplug/). He is also the webmaster for SSC and can be
reached at info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Application Development

Andrew Johnson

Issue #56, December 1998

This book does not attempt to teach programming or C, but serves as a topical
reference for experienced C programmers to become familiar with the Linux
programming model.

• Author: Michael K. Johnson & Erik W. Troan
• Publisher: Addison Wesley
• Price: $45.95 US
• ISBN: 0-201-30821-5
• Reviewer: Andrew Johnson

Linux Application Development is a solid introduction to Linux programming. It
does not attempt to teach programming or C, but serves as a topical reference
for experienced C programmers to become familiar with the Linux
programming model.

The book is divided into four major parts. Part One, “Getting Started”, contains
three short chapters covering the history of Linux, licenses and copyright
issues, and the availability and locations of Linux documentation, mailing lists
and other books and sources of information.

Part Two provides an introduction to the Linux development environment and
tools. Some of the coverage is minimal; for example, the section on the GNU

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

debugger, gdb, contains only a short list of the essential debugger commands
and references to two other books which offer tutorials on the debugger. More
extended coverage is given to memory debugging tools. This includes source
examples and information about creating and using libraries. There is also brief
but important coverage of make, the gcc compiler and its options, system calls
and common error codes.

The twelve chapters of Part Three, “System Programming”, comprise the bulk of
the book. These chapters, as elsewhere, are heavily subdivided into
subsections, which I found a little distracting on first reading, but quite
convenient for relocating information later.

The authors give an excellent balance of breadth and depth of coverage, with
chapters focusing on processes, simple and advanced file handling, directory
operations, signals, job control, terminal handling, socket programming, dates
and timing, random numbers and console programming. Virtually all of these
topics are augmented with small source code examples.

A larger example program, ladsh, is a simplified UNIX command shell which is
developed over the course of several chapters and eventually supports simple
built-in commands, command execution, I/O redirection and job control. The
final version of this program is 710 lines of code, and working through its
development provides a good exercise in tying together some of the basic
elements of Linux system programming.

Part Four describes a few important development libraries such as the S-Lang
terminal library, the Berkeley database library and the popt option parsing
library. This section also provides brief discussions of regular expressions,
dynamic loading with dl, and the names and user databases.

Finally, three appendices cover direct I/O port access, the final source version of
the ladsh program and the GNU licenses.

Overall, the book is well-organized and the writing and explanations are clear
and concise. Although designed explicitly as a reference for experienced C
programmers making the switch to Linux, I would recommend it as a good
additional resource for anyone just beginning to learn C in a Linux
environment.

Andrew Johnson is currently a full-time student working on a Ph.D. in physical
anthropology and a part-time programmer and technical writer. He resides in
Winnipeg, Manitoba with his wife and two sons and enjoys a good, dark ale
whenever he can. He can be reached by e-mail at
ajohnson@gpu.srv.ualberta.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux System Administration Handbook

David A. Bandel

Issue #56, December 1998

Managers who don't actually administer systems, but make decisions regarding
whether Linux is “appropriate”, or intermediate users who can use the better-
fleshed-out chapters to complement other manuals they have, could find the
book a good value.

• Authors: Mark F. Komarinski and Cary Collett
• Publisher: Prentice Hall Computer Books
• E-mail: info@prenhall.com
• URL: http://www.prenhall.com/
• Price: $39.95 US
• ISBN: 0136805965
• Reviewer: David Bandel

The Linux System Administration Handbook was written by Mark F. Komarinski
and Cary Collett. The authors claim to have nearly two decades of experience
between them in system administration, most in Linux, though some in other
UNIX systems. Reading the cover, I attempted to gain some insight into what lay
in the pages ahead. The cover did promise much in the line of system
administration tasks, security, hardware configuration, and much more. The
book also included the gratuitous CD-ROM. (What Linux book doesn't these
days?) The cover, however, gave no indication of the kind of audience it was
aimed at, so I began reading, not exactly sure what to expect. The primary task I

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

took on myself, then, for this review was to determine what audience the
authors were aiming for.

The first few chapters cover boot-up and shut-down and a review of System V
start-up, then dive into user administration and user shells. These chapters do
not discuss Linux installation per se, but I am very familiar with Caldera's
OpenLinux Lite, the distribution included with the book, and it really doesn't
require much in the way of installation instructions, at least not for anyone
vaguely familiar with Linux installation. Besides, all of Caldera's pertinent
documentation is included in the Appendices.

As I continued reading I was impressed with some of the jewels of wisdom and
little-known (or not well-documented) facts about Linux that only seasoned
administrators would know. Unfortunately, this was often offset by short, terse
explanations, short chapters and one- or two-sentence summaries for those
basic chapters toward the front of the book.

Going a little further and getting into the coverage of nitty-gritty network
administration, the chapters grow longer. Like an administrator who's finally
been given his favorite project to work on, the chapters suddenly take on more
detail and more life. The authors go into great detail explaining some of the
lesser-understood and lesser-used of the well-known services, the kinds of
problems you can expect, and how to configure, troubleshoot and maintain
them. In fact, most of the chapters where they went into this kind of detail are
quite well-done. Much of the information presented showed the authors do
indeed know a good deal about those programs and services to which they
have had personal exposure.

Continuing on, they discuss some of the important issues for decision makers
wanting to know about applications for Linux. Here, they took on the daunting
task of trying to do justice to all the applications beginning to show up for
Linux, from open-source software to commercial native Linux applications to
those which can be adapted to Linux. They did a creditable job and warned the
reader they would discuss only those programs with which they had some
familiarity. However, I was still surprised they didn't do a bit more homework
for the reader, including a few more applications which they don't use, but are
available.

For example, in the section on databases, they mention that Oracle, while not
supported on Linux, can use the SCO binaries with iBCS. While they don't
mention it, the same is also true of Informix. Native Linux applications such as
Adabas and YARD (both from Germany) were not mentioned. I find this even
more curious since Adabas is sold by Caldera, and YARD rivals Informix in its
ability to do nested outer joins and other complex SQL queries. YARD is also

ANSI SQL 92 and SQL3 compliant, something most open-source Linux
databases can't begin to boast about. The authors talk about distributions later
on and mention WGS, which positions the Flagship database as its premier
Linux product, but this isn't mentioned in the database section.

While I was hoping that this would be a good book to help beginners discover
Linux, mostly due to the exceptionally easy-to-install OpenLinux distribution, it
is hardly that. Some omissions and skimpy coverage of basics would lead me to
conclude that this is not a good book for a novice administrator. For example,
in the rather short chapter on “Common Features”, where the authors discuss
setting environment variables under the bash shell, they don't mention the
export command, its usage or implications. This kind of oversight could have
novices wondering why subshells or programs invoked by the shell haven't
inherited a particular environment variable.

On the other hand, I also can't recommend this book to experienced system
administrators on the strengths of its detail in the lesser of the well-known
services, even though these sections are well done. While the book would make
an excellent addition to a library lacking the details of network news (NNTP) or
other services, it isn't justified because of the light or non-existent treatment
given to other areas.

I can, however, recommend it to managers who may have noticed their system
administrators have begun to use Linux on their network or are contemplating
allowing this to occur. The book does a good job of introducing Linux in a way
that would give managers a good feeling about this oft-called “Renegade OS”
being put to work in their companies.

On a scale of one to five, I would have to rate this book a solid three. Its
apparent lack of focus, its terse coverage of some important areas, and
redundant coverage of some network issues among the Networking and the
Internet Connectivity chapters make me conclude this first edition doesn't
deserve a higher rating.

For those who think I may be a little harsh, my initial impression was much
lower. While I may be tolerant of a few clichés or awkwardly worded phrases,
the authors trounced solidly on a pet peeve of mine throughout the first few
chapters by misusing the phrase “try and” when they really wanted you to “try
to” do something.

However, I hope the authors will soon begin work on the second edition,
because I can see the framework for a good Linux system administration
handbook. Some other things I hope the authors will consider is either
changing the distribution to Red Hat, which is what they talk about in many

examples, or changing their examples and discussions in the book to reflect the
distribution. For those who don't know, Caldera OpenLinux, while using the
RPM system, is not a Red Hat distribution, but is based on the German LST
distribution. I would also like to see more discussion of the File Hierarchy
System (FHS), partitioning schemes and disk recovery with emphasis on fsck,
and other pertinent commands. Hopefully, they'll also close some of the really
gaping holes, like forgetting to even mention one of the major Linux
distributions, Debian, not to mention all the foreign distributions, such as
S.u.S.E.

Overall recommendation for this book: look twice before you buy. Managers
who don't actually administer systems, but make decisions regarding whether
Linux is “appropriate”, or intermediate users who can use the better-fleshed-
out chapters to complement other manuals they have, could find the book a
good value. Otherwise, I'd hold out to see if the next edition is a more solid
investment.

David Bandel is a Computer Network Consultant specializing in Linux, but he
begrudgingly works with Windows and those “real” UNIX boxes like DEC 5000s
and Suns. When he's not working, he can be found hacking his own system or
enjoying the view of Seattle from 2,500 feet up in an airplane. He welcomes
your comments, criticisms, witticisms and will be happy to further obfuscate
the issue. He can be reached via e-mail at dbandel@ix.netcom.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Learning the Bash Shell, 2nd Edition

Bob van Poel

Issue #56, December 1998

bash, an acronym for “Bourne again shell”, is a large, complicated and powerful
program.

• Authors: Cameron Newham and Bill Rosenblatt
• Publisher: O'Reilly & Associates, Inc.
• E-mail: info@oreilly.com
• URL: http://www.oreilly.com/
• Price: $29.95 US
• ISBN: 1-56592-347-2
• Reviewer: Bob van der Poel

The user shell is the most-seen and used program on any UNIX system.
Through the shell, a user can type commands for file maintenance, launch
various application programs, and automate tedious day-to-day system
administration. Some computer systems (such as Windows 95) don't come with
a shell, but Linux includes a multitude. Most Linux systems have csh, sh, tcsh,
ksh and bash pre-installed. bash seems to have become the standard shell for
Linux.

bash, an acronym for “Bourne again shell”, is a large, complicated and powerful
program. It has been developed over many years and is intended as the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

standard shell for GNU systems. The GNU distributions of bash come with a
manual page and info-style documentation. If you are familiar with UNIX shell
programming, then those will probably be all you need to get bash to do what
you want. On the other hand, if you've read the man pages a few times and are
still scratching your head, you may need more help.

Learning the Bash Shell, as the authors summarize in their preface, “is designed
to address casual UNIX and Linux users who are just above the raw beginner
level. You should be familiar with the process of logging in, entering
commands, and doing some simple things with files.” After reading the book a
few times, I agree; however, the usefulness of this book goes beyond simply
being a beginner's tutorial. If you haven't earned all the stars on your UNIX-
wizard cap, you will find it an often-used reference.

Learning the Bash Shell is a 320-page book divided into eleven chapters, five
appendices and an index. It is written in an easy-to-follow style which avoids, as
much as possible, the terse style of man pages and jargon. The layout and
typesetting make it easy to navigate though the various explanations and
examples.

The first three chapters give an overview of the functions of a shell, the
extensive command-line editing capabilities of bash and the setting up of a
customized environment. The section on command-line editing is one I will
read a few more times—the more I understand and begin to use bash's power,
the less typing I do. Considering the state of my typing ability, this is a Good
Thing.

The next five chapters are certainly the most valuable—they deal with actually
programming bash. All the command words, variables and built-in functions
are covered. Much of this expands on material in the man/info documentation,
with additional comments on when you might want to use a particular
command, its history, and in some cases the suggestion that you may never
need to use it. Furthermore, most of the explanations are accompanied by
examples showing exactly how and when to use the command and its
arguments. In good pedagogical style, the authors present a simple example;
then, as the reader learns more features, the examples are revisited and
expanded until one has a useful and solid shell program. Suggested exercises
are included for the reader to work on in order to improve programming skills.

If you've done any programming, you know about the tedious chore of tracking
down bugs in your programs. Writing scripts in bash is no different—you will
have bugs, and sometimes they will be hard to find. Actually, with the arcane
syntax of shell scripts, they may be very hard to find. Chapter nine will help. The
standard debugging methods (lots and lots of print statements) are covered,

and an extensive debugger is presented by the author. The most interesting
part of the debugger is that it is actually a bash script—neat.

The final two chapters deal with the rather mundane topics of installing bash as
your user shell, some security issues, and obtaining and installing bash on your
own system. Fortunately, since bash comes pre-installed as the standard shell
on most Linux systems, this section can be skimmed through.

The five appendices contain the expected reference lists, BNF (Barkus-Naur
Form) syntax, etc.—good, useful information. Finally, the 14-page index makes
it easy to use the book as a standard desktop reference.

Learning the Bash Shell was written for the 2.x version of bash; however, any
features which are not supported by earlier versions of bash are noted.

Programming in a shell language like bash is quite different from using a high-
level language like C. To me, it seems that bash has been kludged together by a
large number of individuals who, when adding needed features, merged their
preferred syntax into the shell language. The result is that the bash language
can be rather convoluted, and it is easy for a beginner to get bogged down in
details. For this reason alone, Learning the Bash Shell is an important tool. Be
aware that writing shell scripts, especially if you have root permissions, can be
dangerous to the health of your system. Fortunately, the authors warn you
when their examples can compromise system integrity or security.

The examples are short enough for the user to type in, and also available from
O'Reilly's FTP site—well, the authors state they are. I followed the instructions
in the book and downloaded the source file. Unfortunately, the file is for the
first edition of the book and misses the entire debug script. I contacted O'Reilly
by e-mail and received a courteous and timely reply advising me that they
would contact the book editor to track down the source. Perhaps by the time
this review is in print, the correct source will be available.

We have learned to expect professional, well-written, technically correct books
from O'Reilly, and Learning The Bash Shell is no exception. Writing technical
reference books is always a difficult task. It is even more trying when the
knowledge base of the intended audience is as varied as the book's potential
readers. I think the authors have succeeded in making both an introductory
primer for new users and a valuable reference for the more experienced. I
highly recommend this book to anyone who wants to become more productive
using bash, as well as those who wish to learn to write moderately complex
shell scripts.

Bob van der Poel started using computers in 1982 when he purchased a Radio
Shack Color Computer complete with 32KB of memory and a cassette tape
recorder for storing programs and data. He has written and marketed many
programs for the OS9 operating system. He lives with his wife, two cats and
Tora the wonder dog on a small acreage in British Columbia, Canada. You can
reach him via e-mail at bvdpoel@kootenay.com. If he's not too busy gardening,
practicing sax or just having fun, he'll probably send a prompt reply.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Wireless Networking in Africa

PhD. Enrique Canessa

Fulvio Postagna

Carlo Fonda

Gabriel O. Ajayi

Sandro Radicella

Issue #56, December 1998

The experiences of the members of an Italian project in establishing wireless
networking with Linux in Africa.

Global connectivity in Africa is in an early stage due to installation costs,
insufficient basic infrastructures, low quality of available telecommunication
services and limited financial support. The application of wireless technology is
an effective choice to overcome some of these problems, at least within smaller
areas. This is true even if transmission speeds are lower than the ones achieved
by wired networks.

Within a university campus, it is easier to install a radio link system than to
place cables or expensive optical fibers in the ground. Furthermore, radio
installations are easier to protect from external natural phenomena such as
flood, landslide, etc. At first glance, wireless LANs look more expensive than
wired LANs, but in the long term they have lower maintenance costs and are
relatively easy to configure. The use of Linux and standard radio-
communication technologies, in conjunction with the many Linux software
applications, makes this task even easier.

With this scenario in mind, the “Programme of Training and System
Development on Networking and Radio Communications” was initiated in 1995
at the Abdus Salam ICTP, Trieste, Italy. The objective of this programme is to
provide technical assistance and training to academic and scientific institutions
in developing countries—institutions with a need for small area computer

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

networks and a connection to the Internet, either directly or through national
networks.

The Abdus Salam ICTP in Italy and the Obafemi Awolowo University (OAU) of
Ile-Ife in Nigeria agreed to collaborate in the establishment and future
evolution of a Pilot Educational and Research Computer Network at OAU. Such
a network, based principally on personal computers running Linux, today
provides connectivity between several faculties and departments on the
campus.

Training technical staff on the hardware (PCs, cabling, radio techniques) and
software (network and system administration) took place initially in Trieste. The
developmental and simulation work was completed in four months, ending in
January 1996, when all the necessary equipment was sent to OAU. The system
was installed in April 1996. At that time, staff members of other Nigerian
universities came to Ile-Ife in order to benefit from this exercise and be
introduced to Linux for the first time. Besides getting acquainted with the new
technology, this experience led to further connections to the OAUNET. The
campus network has been in operation since June 1996 without any major
problems and has proven to be highly beneficial for academic life at the
University.

Figure 1. Diagram of Wireless Network at OAU

The First Campus Network

As shown in Figure 1, the wireless campus network (OAUNET) is based on a
radio system in the UHF band; it initially involved three separate buildings and
had the capacity to be rapidly extended to other university structures. The
wireless link uses a spread-spectrum, direct-sequence technique providing data
transmission at 2Mbps. The so-called “spread-spectrum” is a digital coding
method in which the signal is transformed or spread so that it cannot be
received by any receiver except the designated one that understands the
transmitted signal code. It minimizes interference to other users and normally
does not require an operation license in the ISM (International Scientific and
Medical Band), depending on the regulation adopted by the country.

Inside each building, an Ethernet 10-BASE 2 cabling structure is installed in
order to keep the initial costs as low as possible (i.e., no hubs, less cable) and to
ensure the local availability of spares (BNC), etc. In each of these buildings, a
Linux PC acts as “faculty server” and provides mail services for the local users
and does routing to the backbone. This strategy has been selected to keep the
user-generated traffic local and reduce the access to the main backbone. All
services are TCP/IP-based to keep the system as standard as possible with

https://secure2.linuxjournal.com/ljarchive/LJ/056/2720f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2720f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2720f1.jpg

Internet protocols, avoiding future modifications when full connectivity might
be provided to the university.

The academic network gateway and the main mail host are located the
Department of Computer Science at the university. Due to national regulations
and the lack of a permanent connection to the Internet, the gateway is linked
on a dial-up base (uucp) using an international direct-dialing line to the ICTP
computer network in Trieste, Italy. Software was developed by OAU staff with
some assistance from ICTP to refine the basic uucp mail transfer: a custom
sendmail delivery program batches mail in intermediate-sized, BSMTP (batch
simple mail transfer protocol) formatted files; these files are compressed as
much as possible before being transferred over uucp. To cope with telephone
line instabilities, a uucp relay was placed in Lagos; the uucp configuration takes
care of selecting the path either directly to Trieste or through the Lagos relay,
automatically choosing the one that works.

Sticking to Linux

Previous in-house experiences with the UNIX system (SunOS and Sun Solaris)
led us to test, within the project, the commercial Solaris 2.4 (x86 version) and
Linux. While this version of Solaris required specific hardware components to
function on the available (486) PCs, Linux was found to be more flexible than
Solaris in terms of hardware compatibility and low memory requirements. On
top of that, the possibility of having high-quality free compilers and software
applications motivated us to continue using Linux. In 1995, Windows NT was
just starting to become popular, so this possibility was not considered. At that
time, Linux was also unknown in the Nigerian academic world. The main
operating systems available there were MS-DOS and Windows 3.1.

The Linux distribution chosen was Slackware. Although more difficult to install
than other distributions, right from the first trials the system configuration
(start-up scripts, etc.) was easier to locate, understand, manage and, most
importantly, to teach. After a whole cycle of Linux setup experiences and
training, autonomous management of all aspects is today a reality. Part of the
system installed at the OAU is shown in Figure 2.

Figure 2. OAU Computer Room

Campus Wireless Connectivity

In order to achieve campus wireless connectivity, the requirements needed
from the system administrator's point of view were to have a network working
all day and night, the least amount of human intervention and reasonable
throughput (bandwidth). The technology adopted to do this job was, as
mentioned above, spread spectrum.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2720f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2720f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2720f2.jpg

The first attempts were implemented using a direct-sequence, spread-
spectrum card supported by the Linux kernel. Most recently, alternative
spread-spectrum equipment that does not require Linux kernel support is
being tested, not because of Linux unreliability, but because this new
equipment has an Ethernet interface instead of an ISA (industry standard
architecture) card that plugs into a PC. This configuration makes the installation
of a wireless link much easier and more flexible, because you can place the
radio unit very close to the antenna (keeping attenuation very low) and connect
it to the PC using a UTP (unshielded twisted pair) cable. In the case of an ISA
card, the RF output is at the rear of the PC, and it is there that the antenna is
connected. Due to the small output power and the attenuation of the cable, it is
not advisable to use more than 10m of coax. This new equipment uses a
different spreading method called frequency hopping and provides a higher
bandwidth.

The possibility of using packet radio technologies, which are well supported
and documented under Linux (AX-25 HOW-TO), was analyzed at the beginning
of the project. However, due to the specific training required, implementation
of this technology was postponed. An advantage of the present spread-
spectrum installation (running two years without major interventions) is that it
is almost plug, play and go.

The local network is stable and does not suffer if there is a failure of the main
power supply, because a standby generator and UPS facilities are available. The
number of registered users of the network increased from 150 in August 1996
to about 290 in September 1996 to more than 600 at present.

On-Line Services

Campus-wide services such as e-mail, FTP, WWW and NFS are available today
within the OAUNET. As connection to the rest of the world is done on a dial-up
line, only e-mail exchange is provided freely to local users. There is no limitation
on the amount and size of the information being transferred on campus.

Some of the communication applications like TALK or WRITE became important
due to poor performance of the local PABX (private automatic branch
exchange). For example, after the launch of the network, people who used to
walk to another location to speak with an administrative officer or colleague
now enjoy a TALK between two buildings located a few kilometers apart. To
reduce bandwidth usage, only text-based conference tools are implemented.
We will also experiment with voice-over input in the future.

All of these new communication tools are certainly providing a revolutionary
change in the local academic life.

Next Steps

The next phase of the wireless network requires the installation of other
Internet services on the OAUNET. For example, arrangements are being made
to provide connectivity to the library and other faculties such as Agriculture.

The success of the Ile-Ife experience stimulated cooperation with other
Nigerian universities. A large program of cooperation with the National
Universities Commission for the establishment of a national academic network
started in 1996 and is still progressing. Linux is part of the technical basis of this
activity. The most interesting applications of radio have been in individual
universities. Among these is the Bayero University (Kano) which decided to
build a link to connect the new campus with the old campus of the university
(about 9 kilometers). This connection was implemented using commercial
wireless equipment and two Linux machines as routers, with one of them as
the whole university mail server and uucp gateway.

Following these results, a series of additional proposals have been received at
our headquarters in Trieste. The first of these new projects, being carried out in
Ghana in collaboration with countries such as the Democratic Republic of
Congo, Ivory Coast and Morocco, will begin soon.

These initial experiences with Linux in Africa are proof of the success and
reliability of Linux.

Acknowledgements

Any of the authors can be reached at radionet@ictp.trieste.it.

Dr. Enrique Canessa is a theoretical physicist currently working as a scientific
consultant at the ICTP. His main areas of research and interest are in the field
of Condensed Matter and scientific software applications. He has been lost in
the Internet since 1987.

Mr. Fulvio Postagna is an Electrical Engineering student at the University of
Trieste and a Scientific Consultant at the ICTP. He has been a radio amateur
since high school and has carried out radio and telecommunications studies.
He enjoys upgrading the Linux kernel for our wireless communications.

Mr. Carlo Fonda is a Physics student at the University of Trieste, a Scientific
Consultant at the ICTP and radio amateur. From time to time he visits our
laboratory after long walks in the marvelous Trieste countryside. He also sends
us greetings via radio and enjoys drawing.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2720s1.html

Professor Gabriel O. Ajayi works in the Department of Electronic & Electrical
Engineering of the Obafemi Awolowo University. Besides computer networking
using wireless radio techniques, his main research topics include rain
attenuation on earth-satellite paths in the tropical regions.

Professor Sandro Radicella is head of the Aeronomy and Radiopropagation
Laboratory and coordinator of the Programme of Training and System
Development on Networking and Radiocommunications at the ICTP. His
interests include, among others, radiopropagation issues and the relationship
between social and economic development and telecommunications.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Sharing Pedagogy with Java

Robert A. Dalrymple

Issue #56, December 1998

An educator uses Linux and Java to share teaching tools with others.

Let's begin by looking at a particular teaching problem I have. Wave motion of
all types, including those on the surface of a body of water, can be decomposed
into trains of sinusoidal waves which propagate at different speeds and
amplitudes. If the frequencies of these waves are similar, the wave motion is
characterized by wave groups. In the simplest case of a wave group, take two
waves that propagate at nearly the same speed, while the group they create by
superposition travels at a different speed (depending on water depth for water
waves). Now, how do you clearly present this concept to a class?

Or, on the other hand, what happens when the two wave trains are traveling in
opposite directions? Is there a wave group? If the two oppositely directed wave
trains have the same frequency, a standing wave system results with no
propagation of energy. How do you conveniently introduce these latter
variations on the same theme?

Finally, what happens when more wave trains are added or when a wave group
reflects back onto itself?

The traditional method of explaining these ideas to a class is to take chalk in
hand and draw pictures illustrating the concepts. These pictures, however
carefully drawn, are static and fail to transmit the idea that the waves and wave
groups are dynamic entities, moving at different speeds and superimposing to
create the resulting wave forms.

An alternate method is to use a graphical computer program, allowing students
to see the result of superimposing wave trains with any frequencies,
amplitudes and directions they wish. By trying different combinations of wave
amplitudes, directions and wave periods, students can empirically discover the
behavior of the water surface. Also, by allowing them to see the separate wave

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

component waves, it is clear, for example, that a standing wave is comprised of
two oppositely directed progressive wave trains.

The graphical program I use to demonstrate this concept and more than a
dozen others was developed with Java on my Linux computer. By writing these
programs as applets, they are available via the Internet to students with a Java-
enabled browser (preferably Netscape Navigator), to use in classroom
instruction, or for anyone who is curious about waves and coastal processes.

Figure 1. The Wave Superposition Applet, Showing a Wave Group

Sharing the Pedagogy

In the traditional model of university instruction, a professor develops the
notes for a course. A textbook is often used to provide either a structure to the
course material or to augment the professor's lectures. These textbooks thus
provide a passive means of utilizing the expertise of another individual to
augment the professor's own knowledge, or they contain a desirable format or
outline for presenting the material. However, the textbook forces the instructor
to adopt most, if not all, of the author's style or approach to a subject. A major
financial commitment is made by the students, who must invest in one or more
texts.

Java and the Internet provide another avenue of utilizing other pedagogies
without making a large investment of time or money in someone else's
approach. In addition, the applets can provide useful graphical and
computational tools.

The applets discussed here are provided on the Internet (address given in the
following section) and are used by a number of other professors around the
world to augment classroom instruction as homework, and as laboratory
experiments for courses in water wave theory and coastal processes. They
were written to support two graduate courses taught at the University of
Delaware. Each applet illustrates a single concept, such as the particle motions
and velocities under a wave of the user's choice. By typing in new data, the user
can explore different scenarios, such as the nonlinear influence of wave height
on water wave speed (Stream Function Wave Theory applet).

Java and the Applets

Using Java-enabled web browsers, these programs can be run locally by
accessing my web site that hosts the applet code. As an alternative, these
programs can also be provided as applications, which run locally on the user's
machine equipped with Java—especially easy for Linux machines that recognize
Java byte code.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2554f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2554f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/2554f1.jpg

My contribution is the Java Applets for Coastal Engineering site that I have
developed. This web site provides Java applets which can assist in the teaching
of water waves and coastal processes and provide useful tools for others. The
applets are hosted at http://www.coastal.udel.edu/faculty/rad/ on my Coastal
Engineering Java Page. The index.html page at this URL lists the titles of the
applets, a terse description of their purposes, and dates that indicate when the
Java code for the applet and the HTML page was last modified. Clicking on an
applet title on the list results in the applet running on the user's computer. The
applet generally consists of several graphical windows: the first allows the user
to input data to the applet and the second shows the results of the
computation. In addition, HTML text associated with the applet provides a
description of the use of the applet, the concepts it illustrates, and some idea of
this theory in the Java program.

Once compiled, all the program elements become separate code segments,
referred to as classes. These elements have been converted by the compiler
into machine-independent byte code, which is downloaded by clicking on the
applet's name on the Coastal Engineering Java Page. The user's browser
converts the byte code into a local version of the applet, which then runs on
his/her machine. The load on my machine is the downloading of the byte code.

While the web site is hosted by a Sun workstation, the programming and
debugging was done with a PC running Linux and the Linux port of Java. The
site, http://www.blackdown.org/, has the latest information on the Linux port of
Java, an HTML version of the Java-Linux HOW-TO and a list of mirror sites for
downloading the Java Development Kit (now JDK 1.1.5). Another reference is the
October 1996 issue of Linux Journal (http://www.linuxjournal.com/issue30/),
which had a number of articles on Java.

Implementation

As this project has developed, the applets have evolved, in part due to user
comments and suggestions. The HTML page for each applet has a mailto: tag to
allow the user to send e-mail directly to me. Also, I have learned new Java tricks
and thought of improvements. So, the code-change dates are provided on the
index page. Future improvements will include homework-type problems with
each applet.

After several months of hosting the applets, it became clear that some
academic programs were being hampered by long download times in using the
applets over the Internet. I now provide an archive file created with tar

containing all the source code and HTML pages, so that the Java programs can
be run locally at other universities. This tar file contains a Makefile, which
provides a convenient way for the system administrator to compile all the

source code at once. After installation, the local user points a web browser at
the directory containing the applets and then proceeds in the same way as the
user on the Internet, but faster. If you want to try this or see the source code,
the anonymous FTP site is www.coastal.udel.edu and the file javapp.tar.Z is in
the /pub/programs directory.

I could improve access speed for the Internet user in a couple of ways. For each
applet, I could compress all the class files for a particular applet into a single zip
file, reducing the number of times the downloading browser has to connect
with my machine. (For Internet Explorer users, the files would need to be in
CAB format.) Another option would be to move to the Java bean model. The
problem with this solution is that the language is evolving rapidly, so the
applets would also have to evolve.

Implications

I view the pedagogical advantages of applets such as these to be paramount
and potentially leading to large changes in the way education material is
delivered (until the next more convenient tool comes along). Another major
implication deals with free delivery of course content. What is the motivation
for people to provide these programs and what is the benefit to their
institutions, particularly if there is a reduced need for textbooks?

Several scenarios may play out in the future. Free course content may soon
dominate the Internet. This would follow the model of the Linux operating
system and other free software packages. What do the developers get?
Recognition. What do the institutions get? The same as they now get with
textbooks—recognition. Alternatively, the advent of methods to bill small
amounts of money safely over the Internet might permit such sites to charge
for each use. This will most likely happen for sites that deliver an entire course
on-line.

Conclusion

Java offers a new and flexible way to provide active educational content to
augment classroom instruction, both for the local institution and institutions
everywhere. Through the Internet or local downloads of applets or applications,
the examples developed by one instructor can be shared by all.

Acknowledgements

Robert A. Dalrymple (rad@udel.edu) directs the Center for Applied Coastal
Research (http://www.coastal.udel.edu/) at the University of Delaware. He has
written LJ articles on Scilab, Xfig, Xfm and EXT2tools. He has been using Linux at
home and work since 1.0 came out. This spring he built ORCA, a parallel

https://secure2.linuxjournal.com/ljarchive/LJ/056/2554s1.html

computer consisting of 8 Pentium II machines linked with a high-speed
Ethernet switched network.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Embperl and Databases

Reuven M. Lerner

Issue #56, December 1998

This month, Mr. Lerner returns to the subject of Embperl, showing us how it
can be used to edit database records.

Those who have read more than a few of my “At the Forge” columns know that I
am a great fan of HTML/Perl templates, which allow us to mix the two in a
single document. In October, I introduced Embperl, a templating system that
can function as a stand-alone CGI program, but can also be integrated into the
mod_perl module for Apache. This month we will take a closer look at Embperl,
exploring ways in which it can allow us to edit records in a database.

There are a number of good reasons to use templates. First of all, by putting
code and design in the same document, designers and programmers can each
modify the elements for which they are responsible. No longer is the
programmer the bottleneck when a site decides to change its design, as is the
case when dynamic output is produced by CGI programs.

Even when you are unlikely to change the look of a dynamically generated
HTML page, Embperl (and similar in-line templating mechanisms that allow you
to mix code and HTML) enables you to stick it all together, making the logic
easier to follow. I have written many CGI programs in which the dynamic output
was dwarfed by the static output—but because even one portion of the
resulting HTML page had to change over time, the entire thing had to be within
the province of the program.

Since the time I wrote October's introduction to Embperl, the package has been
improved significantly. Perhaps the most significant change is that recent
releases of Apache 1.3.1 and mod_perl 1.15 free you from having to recompile
everything when installing a new version of Embperl. Now, Embperl can be
installed and upgraded separately from Apache and mod_perl, just as you
install and upgrade other Perl packages from CPAN. Please see the “Resources”

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

sidebar to learn where to obtain the latest information, including installation
instructions, on Apache, mod_perl and Embperl.

Why Databases?

Databases are an increasingly important part of the Web. Using them, we can
create customized and personalized sites, bringing people the specific
information they want, rather than simply handing them all the information we
have.

In addition, databases are designed to store and retrieve information easily. If
text files and DBM files are too insecure or unstructured for your needs,
consider using a relational database. Relational databases store their
information in tables, where each table has columns (describing the various
fields) and rows (with one record stored per row). Using multiple tables is
where the “relational” part comes in, and it can be an extremely powerful tool.
You could probably program this functionality on your own, but doing so would
be quite complicated—and besides, someone has already done the work for
you.

Relational databases are manipulated using SQL, the Structured Query
Language developed by IBM in the 1970s. You don't write programs in SQL;
instead, you write “queries” that manipulate one or more tables. Using SQL, you
can create tables, modify their contents and request combinations of columns
and rows containing particular types and pieces of data.

SQL is not a programming language, so it must be created and submitted to a
database server by a programming language. In the past, each database
product required its own version of Perl in order to allow access; this led to
versions known as Oraperl, Sybperl, et al. Recently, the generic DBI (database
interface) has produced a stable and portable database engine that allows
access to any relational database with the same interface. The database-
specific parts are kept in DBDs (database drivers) loaded dynamically by DBI.
Assuming you stick to standard SQL rather than database vendors' proprietary
extensions, you should be able to switch database brands by modifying a single
Perl statement.

The relational database I use in these examples is MySQL, described by its
author as a “mostly free” database. I have been using MySQL for quite some
time now, and while it does not have all the optimization and locking features
of its larger competitors, it performs admirably—and more features are on the
way. For more information on MySQL, see the “Resources” sidebar.

Once you have installed Embperl, you need to tell Apache which documents
should be interpreted with Embperl rather than as a straight HTML document.

On my computer (running a modified version of Red Hat Linux 5.1), I put the
following in the srm.conf configuration file:

Alias /embperl/ /usr/local/apache/share/embperl/

In addition, I put the following in the access.conf configuration file:

<Location /embperl>
SetHandler perl-script
PerlHandler HTML::Embperl
Options ExecCGI
</Location>

In other words, I told Apache that any URL beginning with /embperl refers to
files actually in /usr/local/apache/share/embperl, and that any files in /embperl
should be interpreted by the HTML::Embperl content handler. After restarting
Apache, Embperl was up and ready to run.

Creating our Table

This month, we will create a database consisting of a single table, a list of clients
for a consulting practice. One of the central tables in this system is the Clients
table, which contains basic information about each client.

Here is the SQL necessary to create this table:

CREATE TABLE Clients (
 id MEDIUMINT UNSIGNED NOT NULL
 AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(40) NOT NULL,
 address1 VARCHAR(40) NOT NULL,
 address2 VARCHAR(40) NULL,
 city VARCHAR(40) NOT NULL,
 state VARCHAR(40) NULL,
 country VARCHAR(40) NOT NULL,
 zip VARCHAR(40) NULL,
 contact_name VARCHAR(40) NOT NULL,
 contact_phone1 VARCHAR(40) NOT NULL,
 contact_phone2 VARCHAR(40) NULL,
 contact_fax VARCHAR(40) NULL,
 initial_contact_date DATE NULL,
 dollars_per_hour TINYINT NOT NULL,
 UNIQUE (name)
);

Again, we cannot enter this SQL directly into a relational database server; we
must use a program that has been compiled with the correct client libraries.
MySQL comes with a program (mysql) that allows interactive communication
with the database; alternatively, we can use DBI to send the above SQL.

Each column in Clients is defined as a VARCHAR, that is, a variable-length text
field. The length of the field is determined by the number in parentheses, which
I set to 40 mostly to make other elements of the programming easier. (Over
time, I expect to make most of these fields quite a bit shorter.)

The id field is special, not only because we define it as an unsigned integer
(giving us the option of including up to 16 million different clients), but because
it is set to be the “primary key”. As far as the database is concerned, each row
can be identified uniquely with the primary key alone. We set id to
AUTO_INCREMENT, meaning that MySQL will give the first client an ID of 1 in
the archive file, the second an ID of 2 and so forth. Each client will receive an
automatically generated, unique ID number.

We also declare the name column to be unique, since having more than one
client with a given name could be confusing for the people involved. The
database would accept several identically named columns, as long as the ID
numbers were different. However, we will avoid the possibility of having two
clients named “IBM” by checking for this in the database.

You may wonder why we didn't use name as the primary key, since it is
guaranteed to be unique. We could have done so, and everything would work
fine (perhaps a bit slower, since text strings are larger than integers). But
consider what will happen if a client changes its name—we would have to
update all of the references to that client, since old ones will no longer point to
the right place. By making our primary key independent of any information the
client changes, we can continue to keep track of the client regardless of what
information changes.

Inserting Records into the Table

Now that we have defined our table, we will create an Embperl document that
will let us insert new records. (Right now, our table is empty.) An Embperl
document is largely the same as an HTML document, so you can use the <H1>,
<P> and <Blink> tags as well as regular text, and it will work just fine.

However, you can insert Perl code within the Embperl document by putting it
within special square brackets. Here are the four types of square brackets that
Embperl understands:

• [- CODE -]: Evaluate CODE.
• [+ CODE +]: Evaluate CODE, inserting the final value into the HTML

document.
• [! CODE !]: Evaluate CODE as [- CODE -], but only once.
• [$ Meta-code $]: Evaluate Embperl meta-commands.

Thus, we can include this statement:

[- $foo = 5; -]

and $foo will be set to 5—a value that persists over multiple invocations, since
mod_perl and Embperl cache such values. If instead we include:

[+ $foo = 5; +]

then a “5” will appear in the document where the brackets were. If you are
unfamiliar with the idea of a “final value from an expression”, you might want to
end every Embperl block with the name of a variable. Variables return their
values, so if you type:

[+ @reverse_list = reverse @list; $foo +]

then a “5” will be inserted into the HTML document at that point.

Listing 1, add-client.html, is a simple Embperl document that adds a client to
the database. It does not check the data we hand it—since MySQL will do much
of that for us—although it will show the user any database errors that might
occur.

Creating the Form

If you are new to templates, it might take a while to understand the idea of a
single file containing both an HTML form and the program necessary to process
it. Consider that this is no different from a CGI program producing the form
from which it can get input.

Listing 1 contains two parts: form processing and form creation. While Embperl
looks at the former before the latter, we will look at creation first, since it is
generally easier to handle, especially when working with templates for the first
time.

We will have one HTML form element for every column in our table except for
id, since MySQL generates the ID for us automatically. Later, we'll expand this
program to handle editing and deleting of rows in our table, which means we
will need to handle one form element for each column and row in our
database, in addition to one for the “new” record we will be submitting.

My solution is to give each form element the name of the column to which it is
attached, followed by a hyphen and the ID number. The “city” column for the
row with id = 5 will be an element named “city-5”, and the name of the client
with id = 30 will be an element named “name-30”. Since MySQL starts auto-
incrementing ID with 1, we can use “name-0”, “address-0” and so forth for our
new entry.

Early on in our program, we will define the @colnames array, which will contain
the names of the columns in our database:

https://secure2.linuxjournal.com/ljarchive/LJ/056/3137l1.html

@colnames = (id name address1 address2 city
 state country zip
 contact_name contact_phone1 contact_phone2
 contact_fax
 initial_contact_date dollars_per_hour);

Now that we have defined @colnames, we can create the HTML form with
Embperl's meta-commands. We want to create an entry for each element
(except for id, since modifying that would create serious problems), so we will
iterate through each element of @colnames, adding the necessary HTML and
remembering to skip id. This part of my implementation looks like this:

[$ foreach $column @colnames $]
[$ if $column ne "id" $]
<TR> <TD>
 [+ $column +]
 </TD> <TD>
 <input type="text" name="[+ $column +]-0"
 size="40" maxlength="40" >
 </TD> </TR>
 [$ endif $]
 [$ endforeach $]

The above code looks a lot like Perl, with good reason. It uses a foreach loop,
which iterates over the elements of an array (@colnames), putting each
successive element of the array in a scalar ($column). We can then use that
scalar value by putting it in square-plus brackets at the appropriate points in
our HTML.

You are probably not used to seeing the endif and endforeach meta-commands
in the square-dollar brackets. These tell Embperl where the if and foreach

meta-commands end their scope, just as closing curly braces would do in a
standard Perl program.

We set the maximum length of each field to “40”, just as the fields in our table
are all defined to be VARCHAR(40). If we were to modify the table definition
such that each column were set to a more reasonable size (e.g., name should
probably be closer to 60, and contact_phone closer to 15), we would also want
to modify the size of each field in the HTML form. Otherwise, users will blindly
enter too many characters, and their input will be silently truncated by the
database server. The MySQL DBD (DBD::mysql) has a length attribute that can
be used for such purposes, if you wish.

Processing the Form

Now that we have created the form, let's think about how we can process it
once we receive it. The Embperl document will receive the form's name-value
pairs exactly as if they were being submitted to a CGI program, although we will
have to extract them somewhat differently. The pairs are sent in the %fdat

hash, in which the hash's keys are names of the submitted HTML form
elements, and the hash's values are those values. We can grab the name of the

new client with $fdat{"name-0"}, the main telephone number with
$fdat{"contact_phone1-0"} and so forth.

Inserting a record into a table follows the pattern:

INSERT (column1, column2, column3) "
 VALUES ("value1", "value2", "value3")

We will want to do something like this:

INSERT (@columns)
 VALUES (%fdat)

Of course, life isn't quite that easy; we must first create a new array,
@insert_colnames, with the names of the columns we wish to insert—in other
words, everything except id:

[- @insert_colnames = grep !/^id$/, @colnames; -]

Then we turn that into a comma-separated list, which is what we will need for
the first part of the INSERT:

[- $insert_colnames = join ', ', @insert_colnames; -]

With that accomplished, we will use Perl's built-in map function to turn
@insert_colnames from an array of column names into an array of column
values. We then convert the resulting array into a scalar, in which each value is
separated by a comma and surrounded by double quotation marks:

[- $values = join '", "', map {$fdat{$_ .
"-0"}}
 @insert_colnames -]

If @insert_colnames were to consist of
(column1, column2, column3)

the above use of map would turn it into:
($fdat{"column1-0"}, $fdat{"column2-0"},
$fdat{"column3-0"})

which join would then turn into:
$fdat{"column1-0"}",
"$fdat{"column2-0"}",
"$fdat{"column3-0"})

There aren't any quotes at the beginning or the end, but we can add them
when we finally construct the query:

[+ $sql = "INSERT INTO Clients ($insert_colnames)
 VALUES (\"$values\")"; +]

We use square-plus brackets here in order to see (and debug, if necessary) the
query we send to the database. Don't forget that if we are using double quotes

to take advantage of variable interpolation, we must escape the double quotes
we wish to send in our query with backslashes.

We finally send that query with the statements:

[- $sth = $dbh->prepare($sql); -]
[- $sth->execute; -]

If there are any errors, print them for the user:

<P>[+ $sth->errstr +]</P>

Our new record is now inserted in the database.

This entire form-processing section is unnecessary if the user has not
submitted any form elements. In Listing 1, you can see how we used the
Embperl if meta-command to exclude evaluation of this entire block of code if
the user has already done something.

The first time you run this, don't be surprised if everything seems to work and
you get your original form back. As they say, that's not a bug—it's a feature! If
Embperl finds fields in an HTML form that match the name-value pairs in %fdat,
it fills them in automatically. You can turn this option off by modifying the
EMBPERL_OPTIONS bitmask field, described in the Embperl documentation.

Creating an All-Purpose Editor

Now that we have seen how to enter new records using Embperl, let's expand
the template such that it will allow us to modify and delete existing records, as
well as add new ones. You can see the complete listing for such a template in
Listing 2 in the archive file, client-editor.html.

The first task is to retrieve existing elements from the database and turn them
into a list of form elements the user can grab. As we saw earlier, it will be
easiest if we give each form element the name of the column with which it is
associated, along with a number indicating its record ID number.

The first order of business is to retrieve rows from the current database. We do
that with a SELECT statement, whose syntax looks like this:

SELECT column1, column2, column3 FROM Tablename;

We set up our query as follows:

[- $sql = "SELECT $colnames FROM Clients"; -]

Now we prepare and execute the query using the standard DBI syntax:

https://secure2.linuxjournal.com/ljarchive/LJ/056/3137l2.html

[- $sth = $dbh->prepare ($sql) -]
[- $sth->execute -]

The result from a SELECT is a table, which we can retrieve in a number of
different ways. Perhaps the easiest method is to grab it as an array reference,
then turn that array reference into an array containing the name-value pairs,
continuing to fetch array references until we run out. If we use Embperl's while

meta-command, we can do that fairly easily:
[$ while ($record = $sth->fetchrow_arrayref) $]

We then grab the id column:
[- $recordid = $record->[0]; -]

We can turn that array reference into an array, using Embperl's foreach meta-
command to iterate over each element, printing each one except id in a table
row. If we store the current record (row) number in $recordid and the current
field number in $fieldcounter, we can create this by iterating over the following
code:

<TR>
<TD>[+ $colnames[$fieldcounter] +]</TD>
<TD>
 <input type="text"
 name="[+ $colnames[$fieldcounter] .
 '-' . $recordid +]" size="50"
maxlength="100"
 value="[+ $field +]" >
</TD>
</TR>

We will also add a set of three radio buttons to indicate whether the user
wishes to delete this record, modify it or do nothing. We will set “nothing” as
the default, since we don't want users to inadvertently delete any elements. We
create the radio buttons, using the modify- stem just as we would in normal
HTML. However, we will add the current ID number to that stem:

<P><input type="radio" value="nothing"
 name="modify-[+$recordid +]" checked> Do nothing
 <input type="radio" value="modify"
 name="modify-[+$recordid +]"> Modify this client
 <input type="radio" value="delete"
 name="modify-[+$recordid +]"> Delete this client </P>

As you can see in Listing 2, we also added a check box to the initial “new client”
form to indicate whether a user is interested in adding a new client. This check
box can be hardcoded in HTML, since we are allowing users to add new
elements from only that one form, with the pseudo-ID of 0:

<P><input type="checkbox"
name="modify-0">
 Add this new client <P>

Inserting, Updating and Deleting

Just as add-client.html (Listing 1) was divided into a processing section (the first
part) and the form-generation section (the second part), so too is our full client-

editor.html (Listing 2). The above section describes how we will use SELECT to
create the HTML form, so all that remains is describing the processing section,
which comes at the top of the template.

With add-client.html, we could assume that the user wanted to add a new
client. There are now four possibilities: adding a new client, updating an
existing client, deleting an existing client and doing nothing at all. While add can
be true only for modify-0 (the new record), we have to check every set of HTML
form elements that comes to us. The simplest case, of course, is when the
modify- radio button is set to “nothing”.

If the user wants to add a new record, the element modify-0 will be checked.
We can use an Embperl if meta-command to check for its existence:

[$ if $fdat{"modify-0"} ne "" $]

In other words, if the user checked modify-0, we will add a new record, just as
we did in add-client.html.

Finding out if the user checked modify for one of the records is a bit trickier. We
take the names of all submitted form elements (sort keys %fdat), and use grep

to grab all of those with the modify- stem:

[$ foreach $clientid
 (grep {($_ =~ /^modify-\d+$/) && ($fdat{$_} eq
 "modify@bb:1.)}
 (sort keys %fdat)) $]

If the above looks a bit intimidating, remember that $_ contains the value of the
scalar currently being handled by grep. We tell grep to return only those array
elements that match modify-\d+ (that is, modify- followed by one or more
digits), and whose value is modify. We then take the array returned by grep and
iterate over it using Embperl's foreach meta-command.

Once inside the foreach loop, how do we create the SQL query? We first have to
grab the ID of the element in question, so that we will update only the
appropriate record. We do that by giving:

$clientid =~ m/(\d+)$/;

This puts the ID value in the temporary variable $1. We then use a combination
of grep, map and join to create the list of name-value pairs necessary to
complete an UPDATE statement syntax with:

UPDATE Clients SET
name1="value1",name2="value2"
 WHERE id = $1

We use grep to grab all column names except for id (once again, we don't want
to change that value). We then filter that result through map, turning the list of
column names into a list of name="value" pairs. Finally, we join that list
together with commas, resulting in the scalar $pairs:

$pairs = join ', ',
 map {"$_ = '" . $fdat{$_ . "-$1"} . "'"}
 grep (!/^id$/, @colnames);

We can then set up the SQL query as follows:
$sql = "UPDATE Clients SET $pairs WHERE id = $1";

Deleting elements is easier than updating, since we don't need the name-value
pairs. We can use the statement:

$sql = "DELETE FROM Clients WHERE id = $1";

where $1 matched the number of the current element.

Conclusion

Believe it or not, we are done. This client editor obviously needs some help with
its user interface, since it is still possible for someone to enter an illegal value
(e.g., a bad DATE element for initial_contact_date, or a fraction for the TINYINT

column dollars_per_hour). If you have more than three or four clients, this
interface quickly becomes tedious. The lack of truly descriptive names for each
column gives a hard-to-use look to a program that is far easier and less error-
prone than entering straight SQL would be.

However, improving the interface is fairly straightforward once you understand
how to perform the four basic database operations: INSERT, SELECT, UPDATE

and DELETE. Indeed, we have seen that doing all of these in Embperl can be
quite simple. Creating alternative interfaces should not be hard to do, given the
examples we have already seen.

More importantly, this Embperl template is useful for much more than just the
Clients table. By modifying the value of @columns and the name of the table,
you could use this same template to modify nearly any record in any table.

I hope you have enjoyed this romp through the world of Embperl and
templates. A number of templating systems are now available for doing similar
things; even if you are unaccustomed to using such templates to communicate
with databases, you should consider getting one of the available packages and
trying it. Their power may convince you of their utility, too.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/056/3137s1.html

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. In his spare time, he cooks, reads and
volunteers with educational projects in his community. You can reach him at
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

00
1F

00
08

00
06

00
03

00
10

00
10

00
01

00
03

00
07� q� 6 �YmS�8 �3�b��J2 ��Bg � Mz0 -

00
07

00
19

00
12

00
1D

00
19

00
17

00
08�� J 'V �� d�@ ���Ŷ� -

00
18

00
15

00
17

00
0C���h H��j%=��cQ�T�����z��_�*����2,Tʛ � �U�]�je�

00
19

00
0B

00
11��Y�ll��nn� �� P�e i-

00
01

00
16

00
06��C >����B\�=GD��j���C{��T,��Ŏ 00

05
00
07

00
03

00
02����_ '��=$� 7�� |

00
13

00
16

00
1F

00
13

00
0B�"Z� ǵk-����u]p@���d_�$, k{�{�� � ��p@�

00
18

00
08

00
10

00
04

00
1A

00
07<�9���a^ �gK G v�N�O�� { ۰�� 00

01
00
17

00
18

00
04

00
16

00
1A

00
16ȹ�>� � �N ��� ~� �D�� # ��Î��ÈY 9�

00
11

00
0E

00
0E

00
1D

00
18

00
0E

00
18���{.�o|��DQ%�� ��,J " ��q�� |

00
1A

00
1D

00
1A

00
16���9`N�]��(� �ÀT̯�0b�u���^$}.N�����]��^�Ø ��r�п�^˫�'��^\:_<ˁ

\�⿅ 00
0F

00
11� 00

0B
00
04

00
0E

00
1A

00
11

00
08

00
17a� z�� b��Y #� e ��=J��T�칹

00
16

00
01

00
14� ϓ1�� 00

1D
00
1EAY��h� ,�{K �s �eLp05

F5
00
1Cpr� ?�00

12
00
16

00
1C���F|� �d� 7

�#"��A��A.ɞ�I@��\+͛ 00
1A

00
1F

00
1B

00
18

00
0C։�� �JR� e��| � 65/ � �͐�-

00
08

00
19

00
11F��% �n � �鈬 00

12E�w4|]��L�}
00
13

00
08

00
0C

00
0F

063
2C7�X_~����� �D��t�x�%�s�] =�(n <�H`�n ��dOd���!

00
1B

00
02

00
12

00
1E

00
0BH�$ qB�ar�� \� ?^ ��x�+

�K׳ 00
02

00
7F

00
1By{\�r�������� 0� �U���չ�{���?]�) 00

1AFo�zC:E�a� SkX�xQ{�^��vf�l�A�n�I�
곴

00
08

00
01

00
10

00
03

00
07L �����wB�g���L�Ȃ'D�5 U�+&Q���� �Q��� ��^�vƄ��J2�0MQ>��TM�

00
1D

00
15$J���� �BH��Ra��4U�L���d�R5�0004ڋ\� 00

12
00
13h5 !

00
05

00
08

00
12���A� ho� ���P�� 哻 00

15�+ ��+� 00
0EO+��� �%���

00
14w�M �j�ҽ 00

18P ˵�PU��00
ݥ11 00

06
00
06�� �< 00

08
00
19

00
13Vȕ�S�����

00
10

00
06

00
19

00
11

00
01

00
0B��� �� � � �� |��e�X���|�R��sA

00
02

00
7F

00
1ED�����n��� �6[I���7O�0:�Da��<��o�S2�'��: �mK� OĴ�gM���

00
0F

00
05

00
7F

00
04

00
11

00
12

00
0F

00
08�.�ɏ��aTkH6 ��ZN��� � R��J �:r���[', ��(��� \��W�j4 � �w' �R\

00
12

00
190�`)� �϶ � 00

18
00
0E

00
17

00
05

00
12D � � �����L���G� �x��F@�- !

00
04

00
03

00
16>�K�gy��p��j�h� � �=� [%�vߜ��

00
0E+����BI��� ��[�TsIs~c����ن� 00

07
00
1E

00
0EEM�S�;� n; ���y�� ;Ҵ;�����ێ1��

00
0C% 5@�72���)����2l��D��)��ۖ&� 00

12uƱ̛�T��T�@ ʽw}
00
1E

00
03

00
1A

00
15

00
15

0
1�d�L�JxkJV� RJ\�0� D��~ ƽ>�C�� �)�`� ��u�G�����R)�%��ï. J� J� J ��Ɓ�K

00
19

00
13

00
13�e}����Y����)l���~� O E? \L��ԅ 00

15
00
1A

00
1D

00
06II �{�d �� s��ģ룎

00
06

00
1B

00
16�)5 !�_� O^���V��\9�t��M� qm^u��)�cD��t �}

00
1A3�#q� $0 yr�)��yԚ퉋nH���/

00
0F

00
11

00
0E

00
18�=�A���oj�t=�cX�k B ��L�j�@ �I�J˜t�F ,3��:A

 Advanced search

Linux Security for Beginners

Alex Withers

Issue #56, December 1998

Mr. Withers takes a look at basic security issues and how to solve them using
available tools

Security is one of the biggest issues on the Internet today. It affects everyone in
one way or another. If you use Linux, it should be a big concern to you. You
may think security is for system administrators managing 20 or more machines
and not for the average user with a simple PPP link to the Internet. This may in
fact be true, for the chances of anything happening are rare. Are you willing to
take a chance and trust the security of your system right out of the box?

Ignorance on your part may turn into a powerful tool in the hands of a cracker
willing to compromise your system. Is knowing every in and out truly necessary
to keep your system secure enough for safe usage? Not really, but one of the
best things you can do is become aware of what is available. Many people are
intimidated by the subject, since it covers a wide area, but you don't have to be
a security guru to be safe. On the other hand, you do need to be willing to get
your hands a little dirty.

TCP/IP Basics

Before talking about security, the basic underlying principles of the TCP/IP
protocol suite must be understood. There are two parts to TCP/IP: tcp and udp.
I won't go into great detail about the difference between them—mainly, tcp is
connection-oriented and udp is connectionless. Both have their advantages
and disadvantages, and both are used differently.

These two protocols are the underlying base for applications run over TCP/IP
networks. Each machine connected to a TCP/IP network has its own IP address
to uniquely identify it. Each application has its own port number on that IP
address. A normal connection to the Internet is no different, since it could be
considered a giant TCP/IP network. The two files which govern an application's

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

port and protocol are /etc/services and /etc/protocol. The first, /etc/services,
identifies the machine's services and the port number and protocol for each
particular service. The second file, /etc/protocol, simply identifies the protocols
used in /etc/services.

These two files identify only each service, its port number and its protocol.
Where is the application? Instead of having an application running in the
background listening for its respective port and protocol and perhaps
generating hundreds of daemons, we have only one: inetd. inetd listens for
each service, and when it notices a remote host making a call, it spawns the
application bound to that port number. How does inetd know which application
goes with which service? It uses its configuration file, /etc/inetd.conf. This file
matches the service found in /etc/services with an application found on the
system.

For example, let's take a look at a small chunk of that file:

ftp stream tcp nowait root /usr/sbin/ftpd in.ftpd\
 -l
telnet stream tcp nowait root /usr/sbin/telnetd\
 in.telnetd
finger stream tcp nowait bin /usr/sbin/fingerd\
 in.fingerd

You may be familiar with some of these common Internet applications. But
what does all this mean? Beginning with the first column, the variables
correspond to the service, the socket type (depends on tcp or udp), the
protocol to be used, wait or nowait (depends on tcp or udp), user field, the
application or server to be called, and the arguments passed to the application.

TCP/IP Security

Where is the security problem in all this? All of these services offer some kind of
access to your system and are the principal means by which a cracker can
compromise your system. How do we police it? Let us look again at the fields of
the code chunk shown above. The first field, representing the service, can be
understood with common sense. If you won't be using that service, there is no
reason to offer it. If no one besides yourself will be using your box, comment
the line out of your /etc/inetd.conf file. The same thing applies to those services
that run independently of inetd, such as web servers (httpd) and mail servers
(sendmail). Each has its own daemon running in the background which must be
killed to eliminate them as potential security risks.

The next field of concern is the user field. Run applications under the least
privileged user possible. If an application doesn't require root to run properly,
don't run it with root privileges.

The last field of concern is the most important for those services you do require
to be available. My example above works fine when offering those services, but
inetd doesn't give you much control. A far better alternative comes with most
Linux distributions: tcpd. This daemon wrapper is executed instead of your
usual server application, and offers far more protection. It will log requests for
services to syslog, and it can allow and deny hosts based on rules specified in
the /etc/hosts.allow and /etc/hosts.deny files. The rules can do very complex
things you wouldn't normally be able to do, such as allowing or denying certain
services for certain hosts. It can also trigger applications based on access of
services or requests by remote hosts. The list of possibilities is endless. Details
on this subject can be found in the August 1997 Linux Journal (issue 40) in the
excellent article entitled “Wrap a Security Blanket Around Your Computer” by
Lee Brotzman. Many security and administration books covering this subject
are also available.

Focusing on your System

Now that you have commented out those services that aren't needed, what do
you do about those that are? As we discussed above, you could use tcp
wrappers, but that only cuts it for services offered by inetd, and tcpd doesn't
necessarily mean your system is secure—those applications can still be
exploited. Also, those services independent of inetd and those people who do
have access to your system must be considered.

Being Aware

The best thing to do is be aware. If you run a news server right out of the box,
you could be taking a severe security risk. On the other hand, if you learn
everything including known security holes, then you have the opportunity to
search for a patch or solution. There are also alternatives such as using
different programs. Instead of using an insecure application like TELNET, use
one that is more secure and designed with security flaws in mind. A secure
replacement for TELNET would be ssh; for sendmail, which is notorious for its
security flaws, a secure alternative is qmail.

What about users who have authorized access, or those who don't but manage
to gain access? There are all kinds of known security holes, back doors and
other nasty things which can be used for no good. Since you can't beat them,
join them. By this, I mean learn all about those exploits; new ones are
discovered every day and patches are made to remedy the situation. Several
web sites thoroughly document these problems and solutions (see Resources).

The system can also be exploited through setuid programs. These are
programs which run with the privilege of the program's owner when executed.
These programs could even be setuid root and, as a result, when executed they

have the permissions of root. Crackers can use this to gain root privileges. The
best way to deal with this situation is to learn about possible problems with
programs that run with the root setuid bit set on and disable those programs
which are not needed.

Access Restriction

With all of the above in mind, let's look at some nifty tools and methods for
internal security. Obviously, someone can compromise your system if they have
access. To limit user access on a machine, you use two files: /etc/securetty and /
etc/login.access. The first file defines which ttys terminals can be logged into by
root. The second limits user access, but is far more flexible. Lines in this file
follow the format:

permission : users : origins

where permission is either access granted (+) or access denied (-), users is
a list of login names, group names or ALL, and origins specifies “where” a
user can log in. An example would be the following line:

- : ALL EXCEPT bob : ALL

This instruction means bob is the only one allowed to log in from anywhere—
everyone else is denied access to log in from all ttys, hosts, domains, etc.

- : ALL : .anytown.state.us console

This statement denies access to everyone except those in the domain
.anytown.st.us and those from the console. With a bit of imagination, one could
come up with some pretty complex rules for logins.

setuid

As I mentioned above, setuid programs can be hazardous. One way to deal with
these programs is to find them first. This can be done with a simple script,
using the find command as shown in Listing 1.

Be aware that this script will generate a file containing sensitive information.
After viewing it, you should delete it. Once you've looked at the list and found
any scripts or programs that aren't necessary, you could disable them as root
using chmod like this:

chmod 644 filename

Once setuid is disabled, the script or program is no longer a security risk.

https://secure2.linuxjournal.com/ljarchive/LJ/056/3062l1.html

Tools

So far, we have discussed a couple of techniques to tighten system security.
What about testing the security on your system? Is it vulnerable to attack? Are
there back doors? Several tools are available to answer these questions. Satan
can scan a system for any back doors or holes that might become potential
security risks. Other programs like netwatch and tcpdump can monitor network
traffic on your system. A packet sniffer program, SniffIt, can also help you in
many ways. Packet sniffers have a bad reputation, because they can be a
security risk to your system, but they can also help you find problems. A lot of
network clients/hosts send information using plaintext, which presents a severe
security risk.

Using sniffit you can test various combinations to see if there is any potential
risk. The program can be downloaded from the URL shown in Resources. I
won't discuss compiling and installing sniffit, for that's another topic. Once you
have the program up and running, you can give it a test drive. To use the
interactive mode, which has a nice curses-based interface, type the following
command:

sniffit -i

In Figure 1, you can see two IP addresses: a destination and a source. The
source IP is sending packets from port 19 to the destination IP, 192.168.1.2.
Notice that port 19 is “chargen” and does nothing but send characters. (Packet
sniffing works only in situations with high bandwidth.) If the source and
destination port are changed to 21, any TELNET sessions from 192.168.1.1 to
192.168.1.2 can be picked up, thus allowing the viewer to see what the TELNET
user is typing in his session. If the user is using ssh instead of TELNET, the
viewer would see only useless garbage.

Figure 1. SniffIt Screenshot

Conclusion

I have presented only some of the basics of security; however, there is far more
to it than this. The best way to make your system more secure is to learn more
about Linux security and to grab some of the tools I have mentioned (see
Resources). Security is like philosophy—there is no definitive answer, just a lot
of questions and books.

Resources

Alex Withers lives in Anchorage, Alaska during the summer where he tries to
convince the hordes of tourists that they need a Linux box at home. The rest of

https://secure2.linuxjournal.com/ljarchive/LJ/056/3062f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/3062f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/3062f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/3062s1.html

the year, you'll find him studying computer science at Gonzaga University. Alex
can be reached at awithers@gonzaga.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

bc: A Handy Utility

Alasdair McAndrew

Issue #56, December 1998

Mr. McAndrew shows us how the bc command can be used for prototyping
numerical algorithms.

Linux, as with almost all UNIX systems, contains a vast number of little utilities
tucked away in such places as /usr/bin and /usr/local/bin. One of these is the
GNU utility bc.

bc is an arbitrary precision calculator language. It can perform arithmetic (both
integer and real) to arbitrary precision, and it supports simple programming. It
is started by the command:

bc -l files

The optional -l flag loads a mathematics library, and files (also optional) is a
list of files containing bc commands. There are some other flags, but they do
not greatly change the functionality. The mathematics library makes the
following functions available to bc:

• s(x): the sine of x in radians
• c(x): the cosine of x in radians
• a(x): the inverse tangent of x (The result is returned in radians.)
• l(x): the natural logarithm of x
• e(x): the exponential function ex
• j(n,x): the Bessel function of order n of x

I used version 1.04 of GNU bc to generate all the examples below. Other
versions of bc may be restricted in their capabilities.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Basic Usage

Let's look at a few examples of bc in action, assuming it has been started with
the -l flag:

2^400
2582249878086908589655919172003011874329705792829\
2235128306593565406476220168411946296453532801378\
31435903171972747493376
scale=50
pi=4*a(1)
e(pi*sqrt(163))
262537412640768743.999999999999250072597198185688\
78393709875517366778
scale=100
l(2)
.693147180559945309417232121458176568075500134360\
2552541206800094933936219696947156058633269964186\
875

The value scale is one of bc's internal variables: it gives the number of figures to
the right of the decimal point. Other versions of bc do not allow arbitrary values
for scale. We could easily use 1000 instead of 10 in the following example, if we
wanted more decimal places.

scale=10
4*a(1)
3.1415926532

On my computer, a Pentium 133, calculating pi to 1000 places takes about one
and a half minutes to complete.

bc provides most of the standard arithmetic operations:

scale=0
920^17%2773
948
.^157%2773
920

The period (.) is shorthand for the last result. The percentage sign % is the
remainder function; it produces the standard integer remainder if scale is set to
zero. When bc is invoked with the -l flag, the value of scale is set to 20.

Programming

Statements in bc are computed as quickly as possible. Thus, when using bc
interactively, as shown above, statements are evaluated as soon as they are
typed. A program in bc is simply a list of statements to be evaluated. The
programming language provides loops, branches and recursion, and its syntax
is similar to that of C. A simple example (from the man page) is the factorial
function:

define f(x) {
if (x <= 1) return (1);

return (x*f(x-1));
}

It is convenient to place such definitions in a file (called, say things.b), and read
them into bc with the command:

bc -l things.b

Then, the output from bc is:
f(150)

5713383956445854590478932865261054003189553578601\
1264182548375833179829124845398393126574488675311\
1453771078787468542041626662501986845044663559491\
9592206657494259209573577892932535729044496247240\
5416790722118445437122269675520000000000000000000\
000000000000000000

We can easily write little programs to calculate binomial coefficients:
define b1(n,k) {
if (k==0 || k==n) return (1);
return (b1(n-1,k)+b1(n-1,k-1));
}

This is a rather inefficient program. The solution:
b1(20,10)
184756

takes some time to compute. We can, of course, write a much faster program:
define b2(n,k) {
auto temp
temp=1;
if (k==0) return (1);
for(i=1; i<=k; i++) temp=temp*(n+1-i)/i;
return (temp);
}

Here auto is a list of variables which are local to the current program. It is
instructive to play with these two implementations of computing binomial
coefficients: b2 gives the result almost immediately, whereas b1 is very slow for
all but very small values of n and k. bc also supports arrays; here we use arrays
to compute the first 100 values of Hofstadter's chaotic function:

h[1]=1
h[2]=1
for (i=3;i<=100;i++)
h[i]=h[i-h[i-1]]+h[i-h[i-2]]
h[10]
6
h[50]
25

We can then print out all these values:
for (i=1; i<=100; i++) {
print h[i]," ";
if (i%10==0) print "\n;"
}
1 1 2 3 3 4 5 5 6 6
6 8 8 8 10 9 10 11 11 12
12 12 12 16 14 14 16 16 16 16

20 17 17 20 21 19 20 22 21 22
23 23 24 24 24 24 24 32 24 25
30 28 26 30 30 28 32 30 32 32
32 32 40 33 31 38 35 33 39 40
37 38 40 39 40 39 42 40 41 43
44 43 43 46 44 45 47 47 46 48
48 48 48 48 48 64 41 52 54 56

We see that bc is particularly well suited to prototyping simple numerical
algorithms. To give two final examples: computing amicable numbers, and
Simpson's rule for numerical integration. First, two integers are amicable if
each is equal to the sum of the divisors of the other:

scale=0
define sf(n) {
auto sum,s;
sum=1;
s=sqrt(n);
for (i=2;i<=s;i++)
 if (n%i==0) sum=sum+i+n/i;
if (s*s==n) sum=sum-s;
return (sum);
}
define amicable(m) {
for (j=1;j<=m;j++)
 if (sf(sf(j))==j && sf(j)!=j && j<sf(j)) print
 j," ",sf(j),"\n";
print "Done.\n";
}

Then, the command amicable(2000) will list all pairs of amicable numbers, at
least one of which is below 2000.

Second, Simpson's rule for numerical integration:

define simpson(a,b,n) {
auto h,sum_even,sum_odd;
h=(b-a)/(2*n);
sum_even=0;
sum_odd=0;
for (i=1;i<=n;i++) sum_odd=sum_odd+f(a+(2*i-1)*h);
for(i=1;i<n;i++) sum_even=sum_even+f(a+2*i*h);
return ((f(a)+f(b)+4*sum_odd+2*sum_even)*h/3);
}

Defining a function f(x) by, say:

define f(x) {
return (e(-(x^2)));
}

and then the command:
simpson(0,1,10)

returns the result of Simpson's rule for the integral of f(x) between 0 and 1,
using 20=2*10 subintervals. (The result is .74682418387591474980, which is
correct to six decimal places.)

Conclusion

In my opinion, bc is a real find: it is small, efficient, self-contained and an
extremely useful utility. It is not to be considered a replacement for a good fast
programming language such as C, C++ or FORTRAN. But as a means for quickly
prototyping numerical algorithms before coding them in a high-level language,
it is excellent.

Resources

Alasdair McAndrew lives in Melbourne, Australia, with his wife, three young
children and a grumpy cat. He is a Senior Lecturer at Victoria University of
Technology, where he teaches mathematics and computing. He is an
enthusiastic and satisfied user of Linux, and has been since kernel 0.99;
currently he is running Linux on both a desktop and a laptop. He enjoys
trawling the Internet for Linux software suitable for children, and when he has
time, playing the viola da gamba.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/056/2544s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Wonderful World of Linux 2.2

Joseph Pranevich

Issue #56, December 1998

Mr. Pranevich gives us a look at the changes and improvements coming out in
the new kernel.

As any kernel developer can surely tell you, the advent of Linux 2.2 is imminent.
Linux 2.1 is approaching near astronomical version numbers in its slow march
to completeness, 2.1.108 as of this writing, and all eyes are looking toward the
day when 2.2.0 will ship standard in the various distributions. Even if you don't
actually follow the Linux kernel version by version, 2.2 is an important
milestone to understand. This article is my take on the Linux kernel
developments of late, with a significant bias towards x86, the Linux I use most
often at home.

Chips Galore

Development in the world of Intel chips is fast and interesting to follow if you
have nothing better to do. Merced, Celeron, MMX—the names of Intel
technologies float past to be replaced by new cutting-edge technology.
(Whether or not these technologies are worthwhile is debatable.) In addition,
AMD, Cyrix and other companies have become solid competitors in the market,
and each has its own little optimizations, quirks and bugs. It is a mess to keep
up with.

Linux 2.2 will be the first stable Linux version to support optimizations for each
of these chips and a selection for the processor vendor in the kernel
configuration tool for even better fine-tuning. Perhaps even more importantly,
Linux 2.2 (and later revisions of 2.0 for obvious reasons) supports bug fixes and
workarounds for widespread processor bugs including the infamous F00F
Pentium bug. Other bugs that can't be worked around, such as several AMD K6
bugs, are reported during startup.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Merced hasn't arrived yet and probably isn't immediately forthcoming;
however, Linux 2.2 has already been ported to SPARC64, Alpha and other 64-bit
platforms, so the infrastructure for a 64-bit native kernel is (happily) already in
place. There are, of course, other obstacles that would have to be overcome
before Linux/Merced could be released, but having a 64-bit ready kernel is an
important step.

Multiple-processor machines will now operate much more efficiently than they
did in Linux 2.0, with problems such as the global spinlock removed. Up to 16
processors are supported (the same as with 2.0), but the performance
difference should be amazing. Also, there is now greater support for the IO-
APIC on Intel boards that will make SMP generally better supported.

In terms of other ports, Linux 2.2 will feature improved support for a large
number of “mainframe” machines such as SPARC, SPARC64, ARM and Alpha
machines. As for “desktop” machines, Linux 2.2 has been ported to both m68k
and PPC flavors of the Macintosh with varying degrees of hardware support.
(You can expect that support will only get better as we approach 2.4 or
whatever comes next.)

On somewhat of a tangent, there is continuing work to support a subset of the
Linux kernel on 8086, 8088, 80186 and 80286 machines. This will not likely be
usable in time for 2.2, but is something to look for in the future.

System Busses and Assorted Ilk

Although somewhat less crucial, Linux 2.2 will support a much larger
percentage of the existing x86 computers with the addition of complete
support for the Microchannel bus found on some PS/2s and older machines.

In addition to hundreds of minor patches to the bus system, including many
new PCI (protocol control information) device names, larger improvements
have taken place. PCI, in particular, has undergone several major changes. First,
the PCI device reporting interface has been changed and moved to allow for
easier addition of new information fields. This particular change doesn't spell
much of a difference for an end user, but it makes the lives of developers much
easier. Additionally, it is now possible to choose whether you wish to scan your
PCI bus using your compatible PCI BIOS or through direct access. This feature
allows Linux 2.2 to work on a larger set of machines: several PCI BIOSes were
incompatible with the standards and caused booting problems.

Sadly, little kernel support is available for Plug-and-Play ISA devices. While that
would be a great addition, a few problems with the currently proposed system
will need to be resolved at some time in 2.3. Fortunately, a great user-level

utility, isapnp, is available for setting up PnP devices; it requires a tad more
work than I'd like, but gets the job done in true Linux fashion.

IDE, SCSI and USB—Oh My!

As far as Linux IDE is concerned, very few obvious changes have been made.
The most obvious one is that it is now possible to load and unload the IDE
subsystem as a module, just like SCSI. This has the added bonus of allowing use
of a PnP-based IDE controller. For less bleeding-edge machines, the updated
IDE driver now supports older MFM and RLL disks and controllers without
having to load an older version of the driver. Linux 2.2 also has the ability to
detect and configure all PCI-based IDE cards automatically, including the
activation of DMA bus mastering to reduce CPU overhead and improve
performance. Finally, more drivers have been developed for controllers that are
buggy or simply different. It is amazing how even excellent things can continue
to become better.

Elsewhere in the IDE world, parallel-port IDE devices have become more
common, and are for the most part now supported by Linux 2.2. It is a good
assumption that many devices currently not supported will be added as 2.2
progresses.

Unfortunately for devices such as rewritable CD-ROMs, there are still instances
where you need to use the newly-added SCSI-emulation driver as a kludge for
support. I don't like it, but that's the way it is. This limitation may be removed in
future versions of the CD-ROM driver, but will likely still be present when 2.2.0
ships.

The SCSI subsystem's main improvement has been the addition of many new
drivers for many new cards and chip sets—too many to even begin to name.

The bad news concerns an ongoing effort to support USB (universal serial bus)
and USB devices; so far, any progress made in this area has not been included
in a Linux 2.1 release. While this could change before the official 2.2 release, it
is unlikely that such a large feature would be included this close to release.

Ports: Parallel and Serial

Nothing much is new on this front; Linux has always had incredible support for
these basic building blocks. The parallel-port driver has been rewritten with
cross-platform issues in mind, and thus what was once just a “Parallel Port” is
now a “PC-Style Parallel Port”, functionality-wise. Note that the naming
convention used to label parallel ports has changed, so you may find your lp1
has become your lp0. Distributions should allow for this change automatically.

Serial support is chugging along as well as it always has, with one notable
difference. Previously, a serial device such as a modem involved two devices,
one for call-in and one for call-out (ttyS and cua, respectively). As of Linux 2.2,
the two are combined in one device (ttyS), and accessing the cua devices now
prints a warning message to the kernel log. On the bright side, Linux 2.2
includes support for having more than four serial ports, it allows serial devices
to share interrupts, and it includes a number of drivers for non-standard ports
and multi-port cards. My only complaint about serial support is its lack of
support for the standard methods used by modules to pass device parameters
at module-load time via the modules.conf file and kmod. Instead, these
parameters are set using the setserial command.

CD-ROMs, Floppies and Removable Media

Thankfully, the hodgepodge of hundreds of CD-ROM standards has solidified
behind the “standard” of ATAPI CD-ROMs. This reprieve has given developers
time to completely rewrite the CD-ROM driver system to be more standardized
in terms of support. Small, quirky differences between the individual drivers
have now all been fixed for better support.

Rewritable CD-ROMs aren't supported as well as I would like. SCSI CD-ROMs are
well done, but IDE drives may require the SCSI-emulation kludge driver. This
limitation may be removed in a future version of the CD-ROM subsystem, but is
something that must be coped with for now.

Floppies are working as great as ever. New developments have been made in
terms of large volume floppies, and it remains to be seen whether or not all of
these will be supported. The so-called ATAPI floppies already have a driver.

IOMEGA's Zip drive, an increasingly popular storage solution, is fairly well-
supported under Linux 2.2. These beasts come in two versions: SCSI and
parallel. Under SCSI, the Zip drives are supported just as any other disk would
be. The parallel version of these drives actually uses a kind of SCSI-over-parallel
protocol, also supported in Linux 2.2. Other IOMEGA solutions such as DITTO
drives may also be supported using the ftape drivers.

The issue of DVD is something for which no one seems to know the answer. It is
highly probable that DVD is already supported in some way, most likely through
the IDE ATAPI driver interface. DVDs are much like CD-ROMs. If a standard
emerges that Linux 2.2 does not support, it is fairly certain that it will be added
sometime during the 2.2.x stabilization cycle following the initial release.

Other removable media may or may not be supported under Linux 2.2. If the
device in question connects through the parallel port, it is possible that it is

supported using one of the parallel-port IDE device protocol modules included
in the kernel.

Glorious Sounds

At long last, the sound code has been partially rewritten to be completely
modular from start to finish. Distributions will be able to more easily include
generic sound support out-of-the-box for their users as well as making it easier
for the rest of us to load and configure sound devices (in particular, pesky Plug-
and-Play ones). Many new sound devices are supported as well, and it looks as
if this is one area where Linux will truly improve in the next year.

One notable defect is the lack of support for the PC internal speaker, if only for
completeness. Then again, Windows doesn't do it either, so who am I to judge?

Video4Linux

Linux 2.2 now has amazing support for a growing number of TV and radio-
tuner cards and digital cameras. This is truly a bleeding-edge addition to 2.1's
roster, so some uncorrected problems may remain, but it is reasonable to
assume they will be fixed in time. In my opinion, this is just an amazing area for
Linux to be in at all.

Back Me Up, Scotty!

Linux 2.2's backup- and tape-device subsystem has not changed much since
the 2.0 release. More drivers for devices have been written, of course, and
substantial improvements have been made for backup devices that work off of
the floppy-disk controller (including the IOMEGA DITTO).

Rewritable CD-ROMs have become a popular solution for backing up data, and
they are supported under Linux 2.2 either natively or by using the SCSI
Emulation driver. There are still remaining problems in this regard—see my
note above on CD-ROMs.

Joysticks, Mouse and Input Devices

Joysticks will be better supported in 2.2, including a large number of new
joysticks and ones with an inordinate number of buttons.

Mice in 2.2 aren't very different from those in 2.0. As in 2.0, some
inconsistencies regarding mouse support will be addressed in the future. For
the most part, mouse control is provided through a daemon external to the
kernel. Some mouse drivers deliberately emulate a Microsoft-standard mouse.
The reasoning behind this is obvious, but it would be nice if it was decided on in
one way or the other. My only other complaint is that Microsoft mice with the

little spinning wheel have no real support, not even using the wheel as a third
button. Again, that really isn't a kernel issue. No big problems are present,
though.

Additionally, several other input devices are now supported under Linux 2.2,
including some digitizer pads. If your devices emulate a mouse (as many do), it
is already supported by Linux 2.2 (and, in fact, by Linux 2.0.)

Bits and Pieces

Many smaller additions have been made to the Linux 2.2 kernel to make it
more robust, and many of these honestly don't fit in any other category. The
loopback driver, which allows you to mount disk images as if they were real
drives, has been improved to support better encryption, although there may be
issues here with U.S. laws. Also, support is now provided for “initial RAM disks”
to allow a Linux user or distribution to boot a kernel with no hardware support
compiled in, and to load the required device drivers from a small RAM disk. This
is useful for systems with Plug-and-Play devices that can't be accessed until
after a user-mode configuration program is run. A driver has also been
provided in Linux 2.2 to access CMOS (complementary metal oxide
semiconductor) RAM directly for whatever reason. A similar driver to access the
flash memory of many BIOS was not put into 2.2, but may be included in Linux
2.4. It may still be necessary to boot DOS from a floppy to update your
computer's flashable BIOS. Finally, Linux 2.2 allows you to share raw disk
images over a network.

File Systems for the World

Linux 2.2 has a wide array of new file systems and partition types to provide
interconnectivity. For the Microsoft nut, Linux will now read (and maybe write)
NTFS (Windows NT) partitions and Windows 98 (and Windows 95 OSR2) FAT32
partitions. Linux 2.2 also understands Microsoft's Joliet system for long file
names on CD-ROMs, and a new type of extended partition invented by
Microsoft.

Drivers to read and write Microsoft and Stacker compressed drives are being
developed but are not yet included in the kernel.

For Macintosh connectivity, an HFS driver for reading and writing Macintosh
disks has been included. HFS+ and older Macintosh file systems are not yet
supported. Macintosh partition tables can also be read by the kernel; this
allows Macintosh SCSI disks to be mounted natively.

Sadly, OS/2 users will still not be able to write to their HPFS drives. Some
updates have been made to the HPFS driver to support the new “dcache”
system, but not the hoped-for overhaul.

If there are any Amiga users left, they will be pleased to know that the FFS
driver has undergone some minor updates since 2.0. This may be especially
useful if the new generation of PPC Amigas uses the same disk format.

For connectivity to other UNIX systems, Linux 2.2 has come forward in leaps
and bounds. Linux 2.2 still includes the UFS file system which is used on BSD-
derived systems, such as Solaris and the free versions of BSD. Linux 2.2 can
also read the partition-table formats used by FreeBSD, SunOS and Solaris. For
SysV-style UNIX systems, Linux 2.2 features an updated version of SysVFS. It can
also read Acorn's RiscOS disks. Finally, Linux 2.2 features an updated version of
the ever-popular Minix file system that can be used for small drives and
floppies on most UNIX systems. With so many incompatible formats and Linux
2.2 reading so many of them, it is amazing anyone ever got any work done.

In other news, support for “extended” drives (the format used by much older
versions of Linux) has been removed in favor of the “second extended” file
system. (This shouldn't matter to many people; Ext2 is far superior to its
predecessor.) With the increased support of initial RAM disks, a “romfs” has
been created which requires a very minimal amount of overhead.

While not quite a file system, Linux 2.2 includes enhanced support for
stretching a file system across several disks transparently. At present, this
support can be used in RAID 0, 1, 4 and 5 modes as well as in a simple linear
mode.

Video

Perhaps the most surprising and cutting-edge addition to the Linux kernel for
inclusion in version 2.2 is what is called the “frame-buffer console” driver (or
fbcon, for short).

Previously, the Linux kernel (for Intel-based machines) understood and
manipulated the video devices only in text mode. Graphical support was to be
provided by two other systems: svgalib for console-based graphics and a
specialized X server for window-based graphics. This kludgey system often
required configuration information to be repeated, and each system supported
only a limited slice of the myriad of video devices in common use.

Since this addition is rather new, it remains to be seen whether it will truly
replace the previous long-standing duality. Unfortunately, it will be nearly a
year after Linux 2.2 ships before this new system is robust enough to support

the cards and technologies we already take for granted as working. My
personal opinion is that this is the right idea, but I will hold judgment until I see
exactly how far Linus and the developers decide to take this feature.

It is also possible to remove support for “virtual” terminals as provided by the
kernel. This allows very memory-conscious people to save just a tad more.

Although unimaginable to the desktop user, Linux can now work even better on
systems that do not actually include any sort of video device. In addition to
being able to log in over serial or networked lines, as Linux 2.0 and previous
Linux versions allowed, it is now possible to redirect all the kernel messages
(usually sent to the console directly before any hardware was initialized) to a
serial device.

Amateur Radio

Linux 2.2 supports a large array of solutions for amateur radio operators,
including a large number of enhancements from Linux 2.0. Unfortunately, this
is not my forte—I've never even seen a Linux-based amateur radio station.

Networking: Ethernet, ISDN and the Lowly Modem

I don't have much experience here; I've been using the same network cards in
all my machines for several years. However, it is not hard to see that the
number of Ethernet and ISDN devices supported in Linux 2.2 has risen sharply.
I have been told that newer solutions such as cable modems are also
supported.

On the low end, not much has changed. PPP, SLIP, CSLIP and PLIP are all still
available for use. I guess some things don't need much improvement. Each of
those drivers has been updated in one way or another.

My only gripe in this regard is the continued non-support of so-called
Winmodems. Not that I blame Linux for their absence (making modems that
are 80% software is a dumb idea anyway), but the idealist in me hopes that one
day these pesky devils will be supported like their more usable cousins.

Networking II: Under the Hood

On the protocol front, a lot has happened that I simply don't understand
completely. The next-generation Internet protocol, IPv6, has made an
appearance. SPX, an alternate version of IPX, is new as well. DDP, the protocol
of choice for AppleTalk networking has also been added. Just as you would
come to expect by now, the existing protocols have been improved. I only wish I
had the need to use some of this stuff.

The list keeps going, however. Linux 2.2 will have an excellent new networking
core, new tunneling code, a new firewalling and routing system called
“ipchains”, support for limiting bandwidth consumption and a ton more.

File- and printer-sharing protocols have also been markedly improved and
enhanced. SMB, the protocol for accessing MS Windows-based shared file
systems, has been improved with bug fixes and the like. If you are a fan of
NetWare, you'll be happy to know that Linux 2.2 supports a large number of
improvements in this area, including access to two different kinds of NCP long
file names. Trusty NFS has also been improved, both at the server level and the
client level. Finally, those guys over at Carnegie Mellon University have been
hard at work developing the new distributed network file system, Coda. This file
system supports a large number of highly requested features, including
disconnected operations for laptops, an advanced cache system and security
improvements.

And, Finally

There's quite a lot that honestly doesn't fit into any of the categories above.

For one, the old system of loading “in and out” drivers (called modules) has
been replaced with a system that doesn't require a separate daemon and
allows for a smaller memory footprint. This is the kmod system which replaces
the kerneld system. I have to say I think this is a good thing.

Also, the old method of access to file systems has been replaced by the
“dcache” system, which may be the fastest virtual file system for any OS
currently on the market. It makes you proud to support Linux.

Joseph Pranevich can be reached via e-mail at knight@baltimore.wwaves.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux System Initialization

David A. Bandel

Issue #56, December 1998

Mr. Bandel takes a look at system initialization for various distributions.

As the title indicates, I will discuss, in one form or another, how Linux system
initialization works. System initialization starts where the kernel bootup ends.
Among the topics I intend to explain include system initialization à la Slackware
—a BSD (Berkeley Software Distribution) knock-off—as well as System V (five)
initialization à la Red Hat, Caldera, Debian, et al., and also point out the
differences between them. You'll soon see that the systems are truly more
similar than they are different, despite appearances to the contrary. I will also
cover passing switches through LILO to init during the boot process—this is
used mostly for emergencies.

What I will not discuss (for brevity's sake) are the details in some of Red Hat's,
Caldera's or other initialization scripts, specifically configuration information
found in the /etc/sysconfig or /etc/modules directories. For those details, you're
on your own. Besides, those details are more subject to change from one
release to the next.

BSD vs. System V

Back in the days when UNIX was young, many universities obtained “free”
copies of the operating system (OS) and made improvements and
enhancements. One was the University of California at Berkeley. This school
made significant contributions to the OS, which were later adopted by other
universities. A parallel development began in a more commercial environment
and eventually evolved into what is now System V. While these two parallel
systems shared a common kernel and heritage, they evolved into competing
systems. Differences can be found in initialization, switches used by a number
of common commands (such as ps: under BSD, ps aux is equivalent to System
V's ps -ef), inter-process communications (IPC), printing and streams. While
Linux has adopted System V inits for most distributions, the BSD command

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

syntax is still predominant. As for IPC, both are available and in general use in
Linux distributions. Linux also uses BSD-style printcaps and lacks support for
streams.

Under initialization, the biggest difference between the two (BSD and System V)
is in the use of init scripts. System V makes use of run levels and independent
stand-alone initialization scripts. Scripts are run to start and stop daemons
depending on the runlevel (also referred to as the system state), one script per
daemon or process subsystem. System V states run from 0 to 6 by default, each
runlevel corresponding to a different mode of operation; often, even these few
states are not all used. BSD has only two modes (equivalent to System V's
runlevels), single-user mode (sometimes referred to as maintenance mode) and
multi-user mode. All daemons are started essentially by two (actually more like
four to six) scripts—a general systems script, either rc.K or rc.M for single- or
multi-user mode, respectively, a local script and a couple of special scripts,
rc.inet and rc.inet2. The systems script is usually provided by the distribution
creator; the local script is edited by the system administrator and tailored to
that particular system. The BSD-style scripts are not independent, but are called
sequentially. (The BSD initialization will be most familiar to those coming from
the DOS world.) The two main scripts can be compared to config.sys and
autoexec.bat, which, by the way, call one or two other scripts. However, the
likeness ends there. Having only these few scripts to start everything does not
allow for the kind of flexibility System V brings (or so say some). It does,
however, make things easier to find. In System V circles (but only in System V
circles), BSD initialization is considered obsolete—but what do they know? Like
a comfortable pair of shoes, it won't be discarded for a very long time, if ever.

Recall that earlier I said Slackware did a BSD knock-off, and yet it still uses the
rc.S/rc.M, et al., scripts. This is because inittab, (which we'll look at later) uses
the same references to runlevels, and uses those (very much System V)
runlevels to decide which scripts to run. In fact, the same init binary is used by
all the distributions I have looked at, so there is really less difference between
Slackware and Red Hat or Debian than appears on the surface, not at all like
older BSD systems that reference only modes “S” or “M”.

init: Where It All Begins

Once the kernel boots, we have a running Linux system. It isn't very usable,
since the kernel doesn't allow direct interactions with “user space”. So, the
system runs one program: init. This program is responsible for everything else
and is regarded as the father of all processes. The kernel then retires to its
rightful position as system manager handling “kernel space”. First, init reads
any parameters passed to it from the command line. This command line was
the LILO prompt you saw before the system began to boot the kernel. If you
had more than one kernel to choose from, you chose it by name and perhaps

put some other boot parameters on the line with it. Any parameters the kernel
didn't need, were passed to init. These command-line options override any
options contained in init's configuration file. As a good inspection of what's
really going on will tell you, runlevels are just a convenient way to group
together “process packages” via software. They hold no special significance to
the kernel.

When init starts, it reads its configuration from a file called inittab which stands
for initialization table. Any defaults in inittab are discarded if they've been
overridden on the command line. The inittab file tells init how to set up the
system. Sample Slackware, Red Hat and Debian inittabs are included later in
this article.

inittab Specifics

Reading inittab, we'll be skipping any lines that begin with a “#”, since these are
comments and ignored by init. The rest of the lines can be easily read as many
other typical UNIX-like configuration tables, i.e., each column is separated by a
“:” (id:runlevel:action:process) and can be read as follows:

• id: This first column is a unique identifier for the rest of the line. On newer
Linux systems, it may be up to four alphanumeric characters long, but is
typically limited to two. Older systems had a two-character limitation, and
most distributions have not changed that custom.

• runlevel: The second column indicates what runlevel(s) this row is valid
for. This column may be null or contain any number of valid runlevels.

• action: This can be several different things, the most common being
respawn, but can also be any one of the following: once, sysinit, boot,
bootwait, wait, off, ondemand, initdefault, powerwait, powerfail,
powerokwait, ctrlaltdel or kbrequest.

• process: This is the specific process or program to be run.

Each row in inittab has a specific, unique identifier. Normally, you will want this
to be something easily associated with the specific action performed. For
example, if you want to put a getty on the first serial port, you might use the
identifier s1. When I execute w to see what processes are running, I can more
easily identify who is logged in via the modem on com1 when that user is
identified as being on s1.

The runlevels are identified as 0 to 6 and A to C by default. Runlevels 0, 1 and 6
are special and should not be changed casually. These correspond to system
halt, maintenance mode and system reboot, respectively. Changing runlevel 1,
for example, can have far-reaching consequences. Note that to enter
maintenance mode (state 1), you can pass init (via telinit2) the argument 1.

Alternately, you can use S or s for maintenance mode. If you change what
transpires for state 1, the same changes will apply when S or s is passed.
However, runlevels 2 through 5 can be customized as desired.

Many systems have the command runlevel (usually found in /sbin). Executing
this command will output the previous runlevel and the present runlevel as
follows: N 2. The N indicates no previous runlevel. If you make a change, say, to
state 3 and then reissue the runlevel command, you'll see 2 3.

Since a good demonstration will illustrate better than just telling you about it,
try this on your system. (Note that I have done this successfully on Debian 1.3
and a few others, such as an older Red Hat [perhaps 3.0], but not many others,
so your mileage may vary.) As root (only root can tell init to change states),
issue the init command. You should see a usage message telling you to pass init
an argument consisting of a number from 0 to 6, the letters A to C or S or Q.
Lowercase letters are syntactically the same as their uppercase counterparts. If
you pass init anything other than legal values, you should receive this same
usage message. Now pass init the argument 8, as in init 8 (or telinit 8, if you
wish). If nothing appears to happen, don't worry. Now type runlevel again, and
you should see 2 8. If you don't have runlevel on your system, try ps ax | grep

init and you may see init [8]. You may or may not see the runlevel listed in
square brackets. Once you have confirmed that you actually did change to
runlevel 8, change back to your previous runlevel. Note that, should your gettys
die, they won't respawn at this runlevel, so you could have a problem logging in
again after you log out. If you are unsure what your default runlevel is, look in
inittab near the top for a line where the first column is id and the third is
initdefault. The second column in this line is the default runlevel. An example
line looks like this:

id:3:initdefault

This demonstration was designed to show you that while runlevels 7 to 9 are
undocumented, they actually are available for use should you need them. (I'll
explain later why nothing happened when you changed states). They aren't
used only because it's not customary. The customizable states for Linux (2
through 5) are usually more than sufficient for anyone.

The letters A to C are used when you want to spawn a daemon listed in inittab
and have this “runlevel” designation on a one-time basis (on demand).
Therefore, telling init to change to state C doesn't change the runlevel, it just
performs the action listed on the line where the runlevel is listed as C. Perhaps
you want to put a getty on a port to receive a call, but only after receiving a
voice call first (not every time). Let's further suppose you want to be ready to
receive either a data call or a fax call, and when you get the voice message,
you'll know which you want. You can put two lines in inittab, each with its own

ID, and each with a runlevel such as A for data and B for fax. When you know
which you need, you simply spawn the appropriate one from a command line:
telinit A or telinit B. The appropriate getty will be put on the line until the first
call is received. Once the caller terminates the connection, the getty will drop,
because by definition, an on-demand process will not respawn.

The other two letters, S and Q, are special. As I noted earlier, S will bring your
system to maintenance mode which is the same as changing state to runlevel 1.
The Q is necessary to tell init to reread inittab. inittab may be changed as often
as required, but will be read only under certain circumstances: one of its
processes dies (do we need to respawn another?), on a powerfail signal from a
power daemon (or the command line), or when told to change state by telinit.
So the Q argument will tell init, “I've changed something, please reread the
inittab.”

Before I delve into sections grouped by distribution, I'd like to emphasize that
they don't stand alone. Each of the following sections will complement the
others.

Slackware (BSD) inittab

Let's take a look at the sample Slackware inittab in Listing 1. I've numbered the
lines for easy reference. The numbers don't appear in your inittab—your inittab
will begin two spaces to the right of the line numbers. Within the inittab file,
lines beginning with a “#” sign are disabled and left as explanatory remarks or
examples for possible future use. Be sure to read all the comments throughout;
they were inserted to help you and may give you a hint on how to better
customize your own inittab. Most programs, such as mgetty or efax, that were
meant to run from inittab come with examples of how to implement them.

Since you already know how to read a line (id:runlevel(s):action:process), I'm
going to cover only those few lines of special interest.

As I've already mentioned, Slackware isn't a true BSD system in the old style.
Rather than having just a single-user mode and multi-user mode, it actually
uses runlevel 3 as its default runlevel. It runs a system initialization script first,
rc.S. This script is designed to be run only once at bootup. Then it runs rc.M. It
skips the line with rc.K unless a system operator intervenes and deliberately
changes to that state. When changing states between single-user and multi-
user modes, the appropriate script is called. (See Listing 1, lines 15, 18 and 21.)

rc.0 and rc.6 are each files that are also run when the system is brought down.
(See Listing 1, lines 27 and 30.)

https://secure2.linuxjournal.com/ljarchive/LJ/056/3016l1.html

You will see power management (UPS power management) handled in the
script as well as the ctrl-alt-del key sequence. (See Listing 1, lines 24, 33, 36 and
39.)

Something odd you should notice about this inittab (which was lifted straight
from a distribution CD): while the default init runlevel is 3, if a power daemon
signals the system to shut down, then power is restored, the shutdown is
canceled, and the system is brought back up at runlevel 5. However, since
runlevels 3 and 5 are essentially identical (they run the same rc scripts), there is
no difference in this case.

Now we come to the standard part which all inittabs were specifically designed
to handle: initializing and respawning gettys. When UNIX was young, dumb
terminals hung off serial ports. These dumb terminals were called teletype
terminals or simply TTYs. So, the program that sent a login screen to the tty was
called getty for “get TTY”. Today's getty performs the same basic function,
although the TTY today is not likely to be quite so dumb. Adding and
subtracting virtual terminals is as easy as adding or subtracting lines in the
inittab; you can have up to 255.

Next, you'll see a line that allows the X Display Manager (XDM) to be respawned
in runlevel 4.

About the only thing I haven't mentioned is that the scripts which do all the
work on the Slackware system are all located in /etc/rc.d. Look them over.
Slackware uses a minimal number of scripts to start background processes.
Specifically referenced by inittab are rc.S, rc.K, rc.M, rc.0 and rc.6. Called by
scripts (such as rc.M), but not by init, are rc.inet, rc.inet2, rc.local, rc.serial and
others.

Sys V inittab (à la Red Hat)

Take a look at the Red Hat inittab (Listing 2). In this file are some good
explanations of what Red Hat does with runlevels. I won't belabor it further
here. Note that the runlevels chosen for use by Red Hat are just one convention
and not indicative of all System V UNIX systems, not even other Linux System V
initializations.

As you can see, Red Hat defaults to runlevel 3, but you can change this to 5
once you have the X server properly configured. (See Listing 2, lines 18 and 56.)
Given the number of graphical tools Red Hat has put together, you'd think
they'd encourage the use of runlevel 5, but using that as the out-of-the-box
default would cause trouble if X was not properly configured first.

https://secure2.linuxjournal.com/ljarchive/LJ/056/3016l2.html

Just below the default runlevel, you'll see the system initialization script (Listing
2, line 21). This is run once when the system boots. Then init jumps down to (in
this case) line 13 (Listing 2, line 26). The lines for 10 through 12 and 14 through
16 are skipped because our default runlevel is 3.

Notice that ud, ca, pf and pr run regardless of the runlevel. When the runlevel
column is null, the process is run in every runlevel.

The getty lines should look familiar to you. Don't be bothered by the fact that
Red Hat chose mingetty over getty. They both do the same thing: send a login
banner to the tty.

Finally, runlevel 5 spawns XDM (X Display Manager).

Under Red Hat, you'll find all the system initialization scripts in /etc/rc.d. This
subdirectory has even more subdirectories—one for each runlevel: rc0.d to
rc6.d and init.d. Within the /etc/rc.d/rc#.d subdirectories (where the # is
replaced by a single digit number) are links to the master scripts stored in /etc/
rc.d/init.d. The scripts in init.d take an argument of start or stop, and
occasionally reload or restart.

The links in the /etc/rc.d/rc#.d directories all begin with either an S or a K for
start or kill respectively, a number which indicates a relative order for the
scripts and the script name—commonly the same name as the master script
found in init.d to which it is linked. For example, S20lpd will run the script lpd in
init.d with the argument start which starts up the line-printer daemon. The
scripts can also be called from the command line:

/etc/rc.d/init.d/lpd start

The nice part about System V initialization is that it is easy for root to start, stop,
restart or reload a daemon or process subsystem from the command line
simply by calling the appropriate script in init.d with the argument start, stop,
reload or restart.

When not called from a command line with an argument, the rc script parses
the command line. If it is running K20lpd, it runs the lpd init script with a stop

argument. When init has followed the link in inittab to rc.d/rc3.d, it begins by
running all scripts that start with a K in numerical order from lowest to highest,
then likewise for the S scripts. This ensures that the correct daemons are
running in each runlevel, and are stopped and started in the correct order. For
example, you can't start sendmail or bind/named (Berkeley DNS or Domain
Name Service daemon) before you start networking. The BSD-style script
Slackware uses will start networking early in the rc.M script, but you must
always be cognizant of order whenever you modify Slackware startup scripts.

Remember when we changed to runlevel 8 above and nothing happened? Since
no subdirectory rc8.d exists and consequently no kill or start scripts, no scripts
were run when we changed states. Had we come from boot directly to runlevel
8, we would have had a problem. Only the kernel, init and those daemons
started via the sysinit, boot or bootwait commands in the inittab would have
been running. I'll let you look at the scripts in the ../init.d/ directory for yourself,
but an example for those with Slackware systems is shown in Listing 3.

For those who find editing links to add or delete scripts in any particular
runlevel a tedious task or who are just not comfortable doing this, Red Hat
distributes a program called tksysv. This program uses a graphical interface
(using Tcl/Tk) to read the script names in /etc/rc.d/init.d and displays them on
the far left side of the application box. If you have a system with init.d in a
different location, you can install symbolic links (for each of the rc#.d
directories) and it will function just fine, or hack the script and customize it to
your system. The system also reads the links in each of the rc#.d subdirectories
and displays them for each runlevel from left to right with start scripts above
and kill scripts below. (See Figure 1.) You can add, delete and even change the
order of execution as you see fit.

Figure 1. System V Runlevel Manager

SysV inittab (à la Debian)

Now take a look at the sample Debian inittab. While similar to Red Hat's inittab,
it also has some differences. First, you'll notice that while Red Hat used runlevel
3 for non-graphical mode and runlevel 5 for graphical mode, Debian uses
runlevel 2 for both (see Listing 4, line 5). The difference is in Debian's use of a
start/kill script for XDM.

I'd also like to draw your attention to a very special line, line 12. The line begins
with “~~” (two tildes). Note that in single-user mode (state 1 or S), sulogin is
called. This prevents someone from just booting the system and becoming
root. While it doesn't prevent other tricks from being used to “back door” the
system and isn't a substitute for physical security of the system, it does prevent
the casual user from obtaining root access simply by rebooting. The use of the
command:

boot from c: only, vice boot a: then c:

combined with password protection of the BIOS setup screens, and a lock on
the case to prevent someone from resetting the BIOS on the motherboard, and
finally setting LILO to 0 seconds, the computer is almost 50% of the way to
being secured from unauthorized tampering. (You can get almost another 45%
from the system itself, but note that the last 5% is effectively out of reach.)

https://secure2.linuxjournal.com/ljarchive/LJ/056/3016l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/3016f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/3016f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/3016f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/056/3016l4.html

Just below the script calls for each runlevel is another line to put a login screen
up for root in runlevel 6. This is only for emergencies, should something go
wrong with the kill scripts in runlevel 6 and the system does not halt properly. It
should never run. (See Listing 3, lines 22 to 30).

The Debian inittab also includes some examples to enable gettys on modem
and serial lines, should you find a use for them. The line that invokes mgetty,
however, will obviously not work unless you've installed the mgetty package.

Following the logic through a boot-up, during a normal boot init knows it will
run in state 2. Armed with this information and not overridden during boot-up,
init first runs the /etc/init.d/boot script. Once this script has run, init then
executes /etc/init.d/rc with an argument of 2. init also runs the commands
associated with ca, kb, pf, pn and po. If you read up on powerfail, you'll see that
nothing will happen until a change occurs with the power. Next, we see that init
spawns gettys on the virtual terminals. In this case (runlevel 2), it will spawn six
(see Listing 4, lines 50-55). The rest of the lines are commented out, and not
used.

Looking at the /etc/init.d/rc script, you can see how it determines what to run to
achieve a state change or to bring the system to the initial state.

Emergencies

Editing inittab or any of the rc scripts requires some degree of caution. Even the
best tests cannot simulate a complete system reboot, and a script may appear
to function properly after a system has initialized but fail during system
initialization. The reasons are diverse, but usually involve getting things out of
order.

In Caldera's Network Desktop, which ran on a 1.2.13 kernel and used modules, I
had modified a script to start the kerneld process early in the boot sequence.
When I upgraded the system to Caldera's OpenLinux v1.0 which ran a 2.0.25
kernel, I made the exact same changes to the same script, tested it and when I
was satisfied all was well, I rebooted. Much to my dismay, the boot process
hung, and guess where—yes, loading kerneld. I found that in the newer kernels,
kerneld needed to know the host name of the computer, which was not yet
available. Things like this can happen to anyone. Something as simple as typing
the wrong key or forgetting to give the full path name of a file can leave you in
the lurch.

Fortunately, you can pass boot-time parameters to init. When the system boots
and you see: LILO:, you can press the shift key, then the tab key to see the
kernel labels available for booting. You can then add a kernel label and follow it
by any required parameters to boot the system. Any parameters the kernel

needs are used and discarded. For example, if you have more than 64MB of
RAM, you need to pass that information to the kernel in the form mem=96MB.
If you pass the -b switch, the kernel won't use it, but will pass it on to init. The
same goes for any single-digit number or the letters S or Q in either upper or
lower case.

By passing any of the numbers or letters to init, we are overriding the defaults
in inittab, as I stated earlier. Most of these numbers or letters do exactly what
they would do if passed from a command line on a running system. However,
the -b is special: it is the emergency boot parameter. This parameter tells init to
read the inittab, but for some special exceptions not to execute any of the
commands, just drop into maintenance mode. Thus, no rc scripts will be
executed. You may mount the system read-write and fix it. One exception to
not executing any inittab commands is the process id ~~ that should have as its
process sulogin. This will give you a prompt for root's password so no
unauthorized person can alter system files such as /etc/passwd or /etc/shadow.

What if you've made a mistake in the inittab file? Can the system be saved? Yes,
but I must warn you not to do this unless absolutely necessary. Coded into the
kernel is the instruction to start init once it is completely loaded and in
memory. If the /etc/inittab is corrupted to the point that init can't run, not even
with the -b switch (I've personally never seen this), it is possible to tell the Linux
kernel to run a different program at bootup instead of init. Instead of issuing
the -b switch, substitute init=/bin/sh after the kernel name. This will cause the
kernel to run the bash shell, and you will be logged in as root. Be careful here,
as nothing else is running, e.g., system logging or the update daemon. This is
not a normal mode of operation for the system. Fix whatever is necessary and
reboot.

Standards

Now that I've explained a significant part of how Linux system initialization
works, I'll tell you how Linux compares to some of the systems I've worked with.

For BSD-style systems, the first time I saw Slackware, I was amazed at its
similarity in boot-up to Ultrix which I was using on some DEC-5000s—it has the
same structure with the rc scripts in /etc/rc.d and the same names. If Slackware
used any system as a pattern, Ultrix could have been one of them. I haven't
used any newer BSD-style systems, so I cannot comment further.

For System V, I can compare the various Linux distributions to several others.
The one with the most resemblance seems to be Sun Solaris, which uses the
same structure as Debian, but uses runlevel 3 as its default and implements
XDM startup as Debian. Also, runlevel 5 is used for system shutdown, and the
rc scripts are moved to /sbin. HP-UX 10.20 is also similar, but HP puts the init.d,

rc.d and other runlevel directories under /sbin. IBM's AIX uses System V style
initialization, but with most of the individual scripts for subprocesses called
directly from its inittab. Finally, SCO OpenServer uses a system similar to
Debian for its boot-time initialization, but does not use symbolic links to init.d.
Instead, all start-kill scripts are located in rc2.d.

The latest Filesystem Hierarchy Standard (FHS) v2.0 for Linux dated 26 October
1997 states either BSD or System V style initialization is acceptable. It stopped
short, however, of outlining exactly where the rc scripts would go, except to say
they would be below /etc, and future revisions to the standard may provide
further guidance. I find that unlikely, since Red Hat and Debian, both very
popular distributions, do it a little differently. I have no particular preference,
and in fact my system has symbolic links which make each look like the other in
case an install process makes an invalid assumption about how my systems are
configured. I will tell you that as lazy as I am, less typing to start and stop
daemons is more to my liking, so /etc/init.d/ gets my vote.

Summary

While this article hasn't been all-encompassing by any means, hopefully you've
gained some knowledge of how your Linux system initializes during boot-up. All
these tables and scripts are simple ASCII text files easily modified with vi or any
text editor of your choice. Just read them and follow their logic. I've shown you
how to read and interpret /etc/inittab and provided you with basic information
regarding how init works.

I've also shown you how to recover in case you've managed to create a script
that hangs the boot process or prevents init from starting. Take a look at your
inittab and the scripts it runs to better understand your system and optimize it
for your own use.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue56/3016.tgz.

David Bandel (dbandel@ix.netcom.com) is a Computer Network Consultant
specializing in Linux, but he begrudgingly works with Windows and those “real”
UNIX boxes like DEC 5000s and Suns. When he's not working, he can be found
hacking his own system or enjoying the view of Seattle from 2,500 feet up in an
airplane. He welcomes your comments, criticisms, witticisms and will be happy
to further obfuscate the issue.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/056/3016.tgz
mailto:dbandel@ix.netcom.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

00
1F

00
08

00
03

00
11

00
12� �W�5 �Zms�� �W�Wl��DjD ��L&�-'�-

00
03

00
02

00
12

00
11

00
05

00
04�c�I>� G �Cp�(�n~{w�)ZR�ƞi�c�

00
13now�mo�]z� �ΈW��џ 00

1C
00
13E�m�� � ;t� 00

1E
00
02� �9��< �O��C���

00
7F

00
7F

00
0C

00
15

00
15��2���� aiV �>*� p��=��Z�� Y]�S�b�

00
01

00
13

00
04

00
05

00
14

00
04

00
1C�e9����ʦL����^08{}v e� & � o� ��)� ,ڷ� 00

14b 7�fK�
1$��c|

00
14

00
07

00
17

00
18

00
08

00
1D��b��+�� �o� ��GV�� ������1�rG�o9�c; �x���Du ���� 96}

.�#�� 00
18

00
05

00
05

00
08

00
06y��G%���� E>m� �"�<��a9\� L��W��6�� �Z� �MZe�%���G�f^� ���

痬 00
15

00
12

00
1C

00
12J���]�/���r�� _� �TR [��� �s6����

00
1A

00
11

00
13

00
18�̟�ZY y MV�8"��Y� ' &f!�:��췸

00
03

00
14�Y� %`�`�Y�)�8 00

03Ԓ 00
17

00
1F

00
04

00
1C

00
0EKd�$�&� �Y���d�� � N�u � �%e

00
0B5'

00
02

00
04

076
497��9�A v��>j ��Ji=8F�cK4�3�V ��D)q���,q��ԡ 00

0Eĺ�U%���� ���Ղ
00
12

00
06

00
14

00
1E

00
15

00
03

00
18

00
02^�t4| �M� Z�o%q %u��9N{ ��4+�b��)_ 0� V�

00
02

00
07�R= ��6�[3 6,����Y��07

0E
00
1D� �۪���v 00

16ҕ 00
02B�� ��ޒ 00

1E
00
0EV F� y�jw�<�ݜ

00
0B

00
0C9�%_��gq� 8hG� �u�k�yV9�"ܚ :ك 00

19
00
19

00
7F� | ��~ o~���-

�M��ӳ 00
1B

00
01

00
0C

00
18Wg�� (�6����L�FO4���L� �!

00
03qG��E� ���v(�fӍع� 00

08�*���> �]� 00
96R� eɖY�>}�R�t�mzܵ

00
0F

00
11

00
12

00
08

00
1D

00
0B)�f�S�n�%O� .E�Tr��;S6i�N�R��m �5 $�o+�> �

00
1C

00
1C

00
05

00
13

00
7F��u�jQ�T���B� ��c�{<�g J��jg��v ���i�O���7!

N$N5�|
00
01

00
14

00
04

00
7FÛJ*� ^�7Xey����5PB���7�� `�����>S��QK;�5�Y ���E,� !

��0��%c�|
�F�c������p� 00

14
00
1F

00
04����Q�C _(A��ĉp Q����ӭ���� 00

1Bm ��!
�͵� 00

0F
00
12

00
18

00
03tb%�C:��N�m%�C:y�N��� ��w;�V <�S���YI � qO���K�ˀ�

夳��[\Z��%�9q�Љ 00
1F

00
1F

00
1C

00
13

00
0CW5F�� ��p ������/ �� miʎ5!� ��

00
1E

00
18�uh�� I G'!�q��]��x�; }��� B}��^ׅ�� 00

1EyS:DS&�= 埇
00
08

00
1E

00
1D��@'�G<��n� ���rXax���_���J ̚\xF��+!�}��Rc<��T헌

00
1D

00
0C�B ���xv��t��,FO��Q�AI �D<�ْ 00

0F�� 5∾ 00
16�'FoQHØ� %

00
02

00
13

00
18

00
0E

00
0B

00
1D

00
1A+�~tF��F�=��59�]pbS � ��%(��� U �� ��|

Qkw�>VN�"�bRSͮ 00
11

00
17k��p~nV�� y�$�s/�-� Ë@ $���K4K:���[

O�k'�w܇�l?05
8E

00
1C

00
15

00
03�� �)� > ɦCҽ 00

1D
00
0BO ����#��~R����5�

00
1C

00
7F

00
1F

00
7Fl�� �� �� �� zq� �

00
10

00
16

00
10�#H�� �@�m��B4�o���+�� ��y\

%p�"OB��s��%�o��\3]и�|�@����7��;�'] 00
16qŢ ��

00
07

00
07C� ��9��L�f 00

ב03 00
08� � 00

03
00
03

00
0Cp� � ;M��O

00
15

00
08

00
17

00
13����s� �� �.�fS�� 8 �D�D/

00
1F

00
15

00
12

00
1F

00
1A

00
14

00
02*�C :�� ���y����[�� � PIB= � �ݺ 00

1A
00
11

00
15B�����G���� 0Io �ώc�#�

00
0F

00
1C

00
11

00
06��- 7� 9~�n �]з 00

03
00
1B

00
1Bň�pw \�r (�e` X�c◌ౣ�1

00
1B

00
07

00
0E

00
04

00
10

00
03

00
13

00
1C

00
0C0w#wG�k�a��n�{-,�w][� X� � ��� ���0 B $���.

00
1B

00
08��S� ����> `l�(� �t<Ԕ 00

06
00
0Ci\3� �CqU\³����O_]

���:�85P�>,�ۭ 00
0Ej���s ޱ 00

08
00
0B

00
04Ī P)�y�f��A.O�Fh �� B

00
19

00
17Q�B4��1\��:� [a�Q � kp�

��٬001E 00
01

00
05

00
1B

00
1D

00
05

00
12

00
02L� K �2ZX) �k�¬�K�� u��e��a��� 4N��:_� �'�i��'�5z�X��}

00
0C9$ s � 00

1FԺ] 00
1B

00
0F

00
0F

00
17

00
0BE|[U�6�A @� w � �7r|/

00
13

00
16���� s8&�X����=0pq� [Ի�9��� 00

1AFǛ 8.���t�%��� 00
1E

00
19Ղ� � 00

07XV:�� �+#�j=O�y�� �
00
1B

00
1A

00
19

00
1B

00
17

00
19

00
18

00
17

00
19

00
06(h@� ��� ����� ����� � �� ` �� � s4]ש����\`P�uԑ05

88
00
02

00
7FjL � ��ǰ�i�̖������H

00
7F

00
06

00
10

00
17

00
02

00
16

00
11� c�~���� � ! yϪ� 00

0F
00
05

00
1A

00
0F

00
07

00
1E

00
0CW ��Re� K ��EG|P/ ��� ^�5

00
19�Az ���"���]g5�H�� /

fت�� 00
14

00
1D

00
11

00
1Fd��� ��hoO����� z ��pϒ�CR>TZ`8TF

00
18

00
1A

00
0E

00
18

00
15

00
08

00
1B� �L9� �,� e| Wc�bR� �b �fɶE֓'{ 00

03R /?� ��U�/

�! 00
01

00
18��d���j �� Y��0x'�9��W 00

1FMd�"�)�ܭU1ʱ 00
7F �מ_���

00
06�yO �W&�s�]h��=&�doO�ީݧ 00

19=� $���i�?
�۩�� 00

1B
00
12

00
1F

00
1A

00
19n��?"� ����nF , <>$���� 3�$��gid2EGW��B��'�c� ��:Ad{ ��:' ��%|

n�Bm�GfFҝ 00
08

00
08Em �=��ٻ 00

1AH��/�-�����&��a�x��-d�xdR6 ��?
����»�]'��U 00

12
00
12

00
08Փ �� �. 00

03
00
07

00
07

00
07Y5gEr ��a�� '�� 00ܪRw��Y�k:�նh8ڹ

0C

00
1D

00
0F

00
1A:����)�+��Ȓ�����, �@��ĤtKO��R AqI��E�P`��Ax��[�����x�J��D���`�it

�N��VC�����ɿl�]�,�3/�v�e�ᴹ���˚�m�3�ٗ5���g6�/
00
0E

00
1C

00
04

00
0F

00
07

00
13

00
04k ���lf`� A������9B���Bi��U� �) q 00

19Ӧ� ��� 00
0F

00
15N3_�U \�v�� ��H�& �n�;k��

00
04

00
7F

00
12�J�r K�* k�|

00
13

00
15

00
1D

00
14

0D
11

00
15W���H�t+�O y$�T�,�b�%��:����+�V _ �E��i]N+��D " 05

FCd7SN���j�h ��;�%i�
00
19

00
1D

00
0F

00
1F

00
12

00
05

00
16

00
0C

00
07B ���oO �� ƪ�/��{�n���m F �&�S �� N� ��颌00

0E

00
13

00
1F

00
1B

00
16

00
15

00
0F

00
14

00
13

00
1E

00
7F�6 % P��� � �g� O� 2{Uw �mnf�dT�_ d��"�S8 7��:

00
16

00
1E\�� �s �_ڤ� 00

12
00
06

00
07

00
0C

00
19

00
1C

00
0FɹTqR�J�n��k�� � ��M ���& � /

h�k���އ������ 00
07F|���]o��$\�])�풾

00
1E

00
1A

00
0EɹP �nV�$]�{Y=�u��e�M�%��50���^��di�'����xY"J�%

00
08

00
1C

00
1D

00
1E

00
0B

00
0C%���Tf����U ��2��,3� *� <�+C�� �C6

00
0B_�z���w����

00
07� XCw07

B2
00
17

00
14�c���B�j� ;V`��_�0 8�P���R��a>u<�SO=��SO=��SO=��SO=��SO=��S

 Advanced search

Letters to the Editor

Various

Issue #56, December 1998

Readers sound off.

Correction

In my article “Little Devil Called tr” in issue 53, a mistake was made by the
editors. In my submission I wrote:

Many UNIX editors allow some text to be processed by
the shell. Take for instance vi with:

 !}tr A-Z a-z

It replaces all uppercase characters of the next
paragraph to lowercase. Another example:

 !jtr a-z A-Z

This one capitalizes the current and next line (the
character after the “!” is a movement character).

The editor changed this by prepending a “:” to the commands. That is definitely
wrong; in that case, you would start a subshell and it would try to run }tr A-Z a-z

and jtr a-z A-Z. Both of which would most likely fail. Without the “:” prepended,
some lines of text (to be determined by the movement character) are piped to
tr and the output is inserted back.

—Hans de Vreught hdev@kbs.twi.tudelft.nl

Author's Correction

In “Training on a Token Ring Network” (September 1998), I referred to the
wrong IBM token ring card. The article should have stated the IBM token ring
ISA card. I apologize for this bug in my article.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

—Charles Kitsuki kitsukic@computer.org

PPP User Interface

There has been a discussion going on about PPPui (a GUI for pppd) and the
ways to check a PPP connection. It is not difficult to do. There is no need for
special programs or to direct syslog to Console 9 as one reader suggested. I
think the easiest way is to run pppd with the -d (debug) option and chat with
the -v (verbose) option and then, during the process of establishing the PPP
connection, just run tail -f /var/log/messages and all the details will be output
(including the assigned IP address and so on) to this file.

—Mihai Bisca mbasca@univermed-cdgm.ro

How Do You Spell Stability?

I know it may sound a bit childish, but I wanted to show this to the community:

bernward:~$ uname -a
Linux bernward 1.2.13 #2 Mon Dec 9 10:33:11 MET 1996 i486
bernward:~$ uptime
 5:32pm up 430 days, 1:55, 3 users, load average: 0.00, 0.02, 0.00

This Linux box has performed admirably since I installed it back in 1995. It is an
aging 486/33 with 32MB RAM and some 2GB of SCSI disks. It serves as a
primary DNS and mail relay for our whole European WAN (a few dozen sites)
and handles an average of 200+ MB of e-mail a week. It also carries out other
menial tasks, such as network monitoring and some form of gateway between
UNIX and Netware. It has never crashed once.

That said, I know I'm not the only one. A recent poll organized on http://
slashdot.org/ showed that around 10% of the participants had a Linux box with
an uptime above the one year mark.

—Philippe Andersson philippe_andersson@ste.scitex.com

Article Listings

Some of the articles in your excellent magazine include program listings. I know
it is possible to get these listings if I know the exact location/file name;
however, if I don't remember this, I am lost. I can browse the “Table of
Contents” on the web site and find the article in question, but there is no link or
clue as to where the program listings might be found. How about including a
link to each article's program listing from the web site TOC?

—Jan Thomas Moldung janth@x2.hd.uib.no

Good suggestion-we've put links into the TOC. All listings are located at ftp://
ftp.linuxjournal.com/pub/lj/listings/issue##/, where ## is the issue in question.
Inside each issue directory is a README file identifying the article to which each
archive file corresponds —Editor

Congratulations

I have been using Linux for some time now and like to show it off to my friends.
One embarrassing problem for me lately has been the need to boot from a
floppy, because a hard drive was too large for my BIOS and I couldn't configure
LILO properly. A recent response in the “Best of Tech Support” column supplied
my answer, and now it boots fine.

The technician who installed the drive under Windows 95 had to shorten it to
accommodate the BIOS and Windows 95. Linux has allowed me to reclaim the
rest of the drive and ditch Windows 95.

Your magazine is my favourite Linux resource. Congratulations.

—Stephen Roach stroach@altnews.com.au

Minor Correction—Issue 53

I just finished another fine read—nice issue as always. One minor error I
noticed though is on page 45, “Technical Considerations” by Richard Kent.

He says, “Within these toolkits are functions which have a variable number of
arguments, much like the standard printf system call.”

Ah, and there's the rub—printf isn't a system call. It is a function from the
standard library (section 3). System calls are, as you know, described in section
2.

I know this is minor, but students new to the C programming language have
enough trouble with the documentation and how to read it without reference
problems.

—Wayne Bjorken wab@courier.cb.lucent.com

How Many Distributions?

I have done years of FORTRAN, C and assembly programming on CPM,
NS32000 and DOS systems, developing a system for operating laboratory
equipment, and processing and displaying experimental data. After having seen
so many platforms disappear, each time forcing a painful migration, I have just

begun moving to Linux. The first issue I confronted, and resolved by making a
semi-random choice, was selecting the distribution. There seems to be no
guidance for newbies in this matter. After I got it installed, I started trying to
learn how to program it. Here I ran into another obstacle. I have been spoiled
by the packaged and documented software from Borland. Now I have to find
tools for Linux and instructions for using them by looking in a huge collection of
books and Internet sites. I find there is a horrendously steep and bewildering
initial portion of the Linux learning curve, which could easily be a barrier to
many people. Distributions need to address this if Linux is going to compete
with MS Windows.

—Bill McConnaughey mcconnau@biochem.wustl.edu

Interview with Charles Andres

I read your interview with Charles Andres in the August, 1998 LJ with great
interest.

I just want to add one point on your question about “How does Sun feel about
the Open Source movement?” If Sun feels that it might be advantageous for
their business to give the source code to everyone, they will do so. Proof of this
statement: When Sun tried to start a “Motif vs. OpenLook” war, they freely gave
away the source code of XView (which was one of the best X toolkits around). It
didn't help them win that war, but in the Linux community XView can still be
used (guess what I am looking at ...) for free. All this happened long before the
issue hit the newsstands.

Same story with Netscape: if a company feels it can win something, it will open
the source. Sun will do it again if they think it would be good for them, but they
won't do it for political or philosophical reasons.

—Erwin Dieterich e.dieterich@ndh.net

I'm paying for the content, not advertisements

I have been reading Linux Journal for quite some time. It is a very informative
magazine and I like it a lot.

However, I cannot help noticing one very bad thing: the portion of LJ occupied
by advertisements has reached approximately one third of the entire magazine.
It seems to be growing even further at the cost of actual content.

While it is clear to me that you earn good money from the advertisements, in
the end you still need your subscribers. I am afraid you might lose at least one,

if you continue your transformation from a journal into an advertising bulletin. I
hope you will realize this before it is too late.

—Denis Havlik havlik@lisa.exp.univie.ac.at

Actually, compared to other magazines, 30% advertising is low. We need at
least this much to stay in business without raising subscription rates. Our
November issue was at 35%. If advertising either stabilizes or increases, we will
most likely expand the magazine by another 16 pages. It is also true that many
readers find value in the ads—I even had one who said we should increase the
number of ads —Editor

About the Inventor Article

I am Guy Barrand from Linear Accelerator Laboratory (LAL) at Orsay (France).

In the article “Open Inventor” by Robert Hartley (September 1998), Mr. Hartley
mentions the Apprentice project. I have looked at the Apprentice code, and a
question has occurred to me.

How far can one go in re-implementing commercial software? In Apprentice,
the API differs from that of Inventor only by the prefix “Ap” that replaces the
Inventor “So”. A good use of the tr command (also documented in the same
issue of LJ) could easily transform an Apprentice distribution to an Inventor
one. Does the Apprentice developer have the right to use the “So” prefix?

In general, is it legal to reuse a commercial product API and to provide a free
implementation of this product? I assume that the Linux community has looked
at these problems for a long time. Can you enlighten me on these points?

—Guy Barrand barrand@lal.in2p3.fr

Good question—I don't have the answer. Perhaps, one of our readers will know
the legalities and let us know —Editor

OSDD Article

I track operating environments for IDC and just read Phil Hughes' article on the
Open Source Developers Day (November 1998). Just wanted to take a moment
to echo your thoughts at the end of the article regarding applications and
Linux.

I often speak to my clients and vendors about Linux (or the “Linux Experience”
as I've taken to calling it; one has to have some fun). I have been telling these
clients and vendors that applications drive OS sales. It really is that simple.

Although there are many barriers to Linux in enterprise, the recent application
development advancements/announcements are a positive step for Linux.
However, now is not the time to rest on these victories. When I think about
Linux “standards” and applications, I believe that involvement from the
beginning by the application vendors is crucial.

—Bill Peterson wpeterson@idc.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Venture Capital Invested in Red Hat

Dwight Johnson

Issue #56, December 1998

The good news brought by the announcement is that a lot of money is likely to
be made using Linux as it penetrates the enterprise market and makes further
gains as an Internet OS.

On September 29, 1998 at ISPCON Fall '98 in San Jose, the computer industry
was galvanized when Red Hat Software announced that Intel, Netscape
Communications and venture capital firms Greylock and Benchmark Partners
had taken minority equity positions in the company. Red Hat further
announced that with the investment they would establish an Enterprise
Computing Division to offer enterprise-grade products and services for support
of global and mission-critical applications.

The good news brought by the announcement is that a lot of money is likely to
be made using Linux as it penetrates the enterprise market and makes further
gains as an Internet OS.

The undisclosed size of the investments was not what caused the excitement --
it was the “who”. Intel was taking a direct, financial interest in the fortunes of
this upstart OS called Linux. Everyone recognized this to be a major turning
point. There could be only one reason for Intel's interest in Linux—opportunity
for profit.

Only the week before, Intel's CEO Craig Barrett, speaking to the British House of
Commons, said that estimates of Internet world trade by the year 2002
currently stood at between $450 billion and $500 billion.

Linux has established itself as the leading Internet server OS, capturing 27% of
the market, while Windows NT has established a reputation as notoriously
unscalable and unstable. Because of the unique leverage of its Open Source
development model, Linux is also rapidly becoming the dominant UNIX
platform.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

When Oracle, Informix, Computer Associates, Sybase and IBM all invest in
porting their products to Linux and Netscape Communications invests both
money and products in Linux, we can be sure they see a major opportunity.

Any Bad News?

Free software advocates have concerns about whether the entry of big
business may actually harm the movement. In particular, buying a stake in only
one Linux distribution may deepen already existing divisions. All distributions
use essentially the same software; however, Intel's decision to buy into Red Hat
amounts to an endorsement that will give Red Hat a decided sales advantage.

Another concern is that Intel may have a corrupting influence. Considerable
resentment has already been aroused with the proprietary Intel-endorsed I2O
specification. Will comparable adulterations be introduced into the products
Intel helps Red Hat produce?

To weigh these concerns, we must consider that advocates have been trying for
years to get free software accepted. Enterprise is now asking for Linux, but
Linux is not ready. Many free software projects are struggling to produce a
product with volunteer help. When we wanted free software, it seemed only
logical that we invest our time and energy to create it. Now that enterprise
wants free software, it is just as logical for enterprise to make whatever
investment is required to create the products it wants.

This is a challenging and pivotal time for free software. Publicly held
corporations do not have a moral imperative to protect the spirit of free
software but only to bring the greatest return to their shareholders. Many of
the free software licenses offer no protection against turning free into
proprietary software. Of the Open Source licenses most often used, the GPL
offers the most protection that the source code, its distribution and the
products derived from it will stay free. Linux and the most essential software
development tools are protected by the GPL. Therefore, we need not fear the
entry of big business into free software.

Red Hat is deeply committed to the free software movement. There is little
possibility that Red Hat will begin producing proprietary products with Intel's
money.

This investment should result in more widely deployed free software. The
concern that Red Hat is gaining an unfair advantage over other distributions
will prove unfounded when it gives the software it develops back to the free
software community. This good will most certainly offset current concerns.

Red Hat has shown itself well deserving of the opportunity this investment
gives them to lead Linux into the enterprise.

Quotes

Dwight Johnson spends most of the time he isn't sleeping working on http://
linuxtoday.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/056/3171s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #56, December 1998

Our experts answer your technical questions.

PLIP or SLIP?

Is there an easy way to connect my laptop running MS Windows for
WorkGroups to my PC running Red Hat 5.0? Should I use PLIP, SLIP or
something else? —Thomas Svanelind

PLIP is probably the cheapest and simplest networking setup around (although
it has limitations), and it is supported by both platforms. —Scott Maxwell,
maxwell@pacbell.net

Time Synchronization

How does someone configure Time Synchronization with Debian 1.3.1?
Specifically, I want my Linux computer to get the current time from another
computer. —Michael Breton, michaelb@geiger.com

A pair of time protocols is available for use over the network. The easiest choice
is rdate, which gives accuracy to within one second. For example, by having this
line in my root crontab file, my host “morgana” resyncs with “hyppy” at 10 AM
every day:

0 10 * * * rdate -s hyppy

--Alessandro Rubini, rubini@prosa.it

Netscape Mail

I am using Red Hat 5.0. I want to use Netscape for mail; however, the SMTP
mailer (Sendmail) and the POP3 mailer clash to the extent that some mail is
coming into Netscape and some is going to Sendmail, accessed via elm.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

I would like all mail to go through Netscape (POP3) via the ISP. How do I stop
Sendmail or halt it? Thanks in advance for any help. —Bill Lunnon,
bill@mirrim.demon.co.uk

Sendmail is most likely sending out mail using your full host name. When a
recipient replies to a message you sent from elm, the reply is sent directly to
your computer and not to your mailbox at your ISP. The easiest workaround is
to set the Reply-to: field in Netscape's mail preferences to your correct e-mail
address. A better solution is to edit the /etc/sendmail.cf file to set the domain
Sendmail masquerades as. This will exclude your host name from mail sent out
using Sendmail. —Peter Struijk, info@linuxjournal.com

Changes After Restoring /home

Somewhere along the line I thought I messed up the file systems under the /
home directory (I have a number of user accounts here), so I restored /home
using a tar backup file. Ever since then, I have not been able to get information
when running various things like finger or whoami.

When I do whoami, I get the following message instead of the alias name: “
whoami: cannot find user name for UID 500” where I used to see grb. When I
do a finger while logged on as myself or another user, I get this message: “No

one logged on” instead of a list of users logged onto the system.

When I type the command ls -al, I get the user ID number and group ID number
instead of the login name: e.g., instead of user and group ID both being grb,
they have the value 500, which is correct according to what I assigned when
originally setting up the accounts. However, I used to see the alias names.

I cannot get the Caldera Desktop to run while logged in as any user, and before,
everything ran just fine. When running the startx program—it tries to initialize
and I even see a color background—the server bombs and goes back to the /
dev/tty screen. Looking at the Xerror logs doesn't give me any information as to
why it is now failing.

I can still start a customized X session with a TWM-type desktop while running
the XwinPro PC X package on my PC. I can also run programs on the client X
server with no problem. I am at a loss as to what to do to get the system
restored or corrected at this point. Can you offer an explanation and a possible
fix to this problem? Thank you in advance for any help you may offer. —George
R. Boyko, grb99@nni.com

These symptoms sound a lot like problems with permissions. This crops up
sometimes when you restore with tar. If you do not set your umask to 0 before
doing the restore, then tar will obey the current umask when restoring files. In

addition, tar finalizes permissions at the end of the restore process. So, it is
possible to end up with incorrect ownership or permissions if the restore is
interrupted before completion. If you restored /home by doing a full backup
and then stopping it once /home had been restored, you could end up with
home directories or other files with wrong ownership or permission bits.

To fix your problem, you will have to check that all of the directories in /home
are owned by their proper owners and that the permissions give at least user
read and write. Use chmod -R and chown -R to recursively change permissions
or ownership of directories.

You should also check the /etc/passwd and the /etc/group files to be sure they
are world-readable (chmod a+r). If they are not, this would explain the problem
with ls reporting UID instead of name. Also, verify that the files /var/log/wtmp
and /var/run/utmp are world-readable as well. If they are not, this would
explain the problem with finger.

As for the Caldera Desktop and X, that could be a problem with the permissions
of /tmp or /var/tmp. Type:

chmod a+rwxt /tmp /var/tmp

to set proper permissions (world read-write, sticky) on those directories. —Bob
Huack, bobh@wasatch.com

LILO Question

I use Slackware 3.5. A long time ago, I recall being able to type the word “single”
at the LILO prompt. This would immediately drop me into the system as root. It
was extremely useful when something wasn't working. Recently I had a need
for it, and it didn't work.

Did it truly go away? If so, when and why? How can I put it back? Is there some
way of specifying the runlevel from LILO? —Walt Stoneburner,
wls@wls.wwco.com

Try using linux single. If your default boot configuration in /etc/lilo.conf is not
named linux, substitute the proper label.

Similarly, you can specify the runlevel from the boot prompt with linux N,
where N is the runlevel number. You should be able to use an append=

statement in lilo.conf to do this as well, although it is probably simpler just to
edit the /etc/inittab file. —Bob Huack, bobh@wasatch.com

VSF Error Messages

I am using Red Hat 5.1. How do I correct a VSF error message? I recently
compiled a new kernel from the newly released Red Hat 2.0.35 source tree.

I did a make dep; make clean; make zImage. Everything went fine during the
compile phase. I ran LILO and set up my lilo.conf file to test my new kernel.
Now, every time I boot, my system stops and displays:

VFS: Cannot open root device 16:01 Kernel panic:
VFS: Unable to mount root fs on 16:01

How do I resolve this problem? —Marlon, yu133048@yorku.ca

The kernel tries to mount your root directory from /dev/hdc1 (16:01 is a hex
number representing the /dev/hdc1 as major:minor number).

It looks as if you don't have a valid Linux partition on /dev/hdc1. You should
add root=/dev/hda1 (or whatever your root partition is) to the LILO prompt or
to the append= line in /etc/lilo.conf. The LILO-mini-HOWTO describes this in
detail. —Alessandro Rubini, rubini@prosa.it

Networking

I need a little help with hardware. Here is the scenario: I am a networking
student at a local college. Besides learning about networking with NT, Windows
95/98 and Novell, I am also learning to speak Linux. I have Red Hat 5.0 and can
install it without any problems. My problem is not with installing or running the
system (so far), but rather it stems from hardware compatibility, as I would like
to run (in different partitions, of course) NT, Windows 95 and Linux (and
possibly Novell) on the same machine.

I have gone through the compatibility lists for both NT and Linux and found
(from the hardware vendors I've contacted) that most, if not all, of the
hardware listed in both the compatibility lists is outdated and can barely be
obtained. I need NICs and video cards that are compatible with NT, Windows
95, Linux and Novell for the same machine.

Granted, I could not and would not venture to try to learn all the operating
systems at the same time while hoping to maintain sanity, but I will be running
a Windows NT server and Linux on one machine and Windows 95 and an NT
Workstation on another as I venture to learn one system at a time and put
some time into learning Linux in whatever spare time I have.

A contact for a Linux hardware vendor in my area (Miami, Florida) would be
awesome. Any help with this will be greatly appreciated. —Tim Rodriguez,
twr@bellsouth.net

Lots of NICs and video cards are compatible with both Linux and Windows. I do
admit most recent hardware such as video cards may not be immediately
supported by Linux (though they come with a Windows 95 driver), but I don't
think you'll have to wait too long to see them working on Linux.

High-performance graphics cards such as ATI AGP are supported by XFree86,
and a version of XSuSE is available for the latest G200 Matrox card. If you want
to use up-to-date graphic adapters, you can consider Linux commercial servers
such as XiGraphics (http://www.xigraphics.com/) which supports most high-
performance adapters.

For Ethernet cards, you should check out http://cesdis1.gsfc.nasa.gov/linux/
drivers/. —Pierre Ficheux, pierre@lectra.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Amy Kukuk

Issue #56, December 1998

Raritan MasterConsole MX4, VRtuoso, Debian GNU/Linux ARM and more.

Raritan MasterConsole MX4

Raritan Computer, Inc. has announced its MasterConsole MX4 switch, an
extension of its MasterConsole product line. The MX4 is a matrix KVM switch
that enables up to four users simultaneously to control up to 256 computers
(PC, Macintosh, Sun, DEC Alpha, RS/6000, HP9000 and Silicon Graphics) each
from a single keyboard, monitor and mouse. It eliminates the cost and clutter
of unnecessary peripherals, reduces equipment space and improves
operational productivity for applications such as multi-user management of
multiple servers. MX4 models are available for 8 or 16 computers, with
suggested retail prices of $2,695 US and $5,195 US, respectively. Both models
support high-resolution video up to 1600x1280.

Contact: Raritan Computer, Inc., 400 Cottontail Lane, Somerset, NJ 08873,
Phone: 732-764-8886, Fax: 732-764-8887, E-mail: sales@raritan.com, URL:
http://www.raritan.com/.

VRtuoso

Bittco Solutions has announced the release of VRtuoso. VRtuoso is for anyone,
particularly the business professional, who needs to harness information
available on the World Wide Web. VRtuoso reads and organizes information,
presenting web sites, searches and bookmarks in a searchable and meaningful
VR landscape. VRtuoso clusters web documents in the VR landscape according
to content and meaning. This form of presentation enables users to quickly

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

locate, correlate and apply information on the Web to tasks at hand. Pre-
release versions of VRtuoso are available for download from Bittco's web site.

Contact: Bittco Solutions, 220, 80 Chippewa Road, Sherwood Park, Alberta,
Canada T8A 4W6, Phone: 403-417-8850, Fax: 403-417-5199, E-mail:
dean@bittco.com, URL: http://www.bittco.com/.

Debian GNU/Linux ARM

The Debian GNU/Linux ARM distribution is a port of Debian to the ARM
architecture and will run on Corel's NetWinder. Development will eventually
target other ARM processors as well. The ARM port will most likely be included
in the next distribution of Debian. Information on the current status of the
distribution can be found at http://www.debian.org/ports/arm/.

Contact: Debian GNU/Linux, E-mail: press@debian.org, URL: http://
www.debian.org/.

LinuxCAD

Software Forge, Inc. has announced the release of the computer-aided drafting
program LinuxCAD. LinuxCAD supports 2-D drafting, 3-D modeling, print and
plot, customization and CAD application development. User interface for the
program is very similar to the interface for AutoCAD, so former AutoCAD users
will have no problem migrating to LinuxCAD. The price for LinuxCAD starts at
$99 US.

Contact: Software Forge, Inc., Phone: 847-891-5971, E-mail:
sales@softwareforge.com, URL: http://www.linuxcad.com/.

Perspective for Java

Three D Graphics has announced Perspective for Java, a 100% pure Java Class
Library, JavaBean and a fully pre-configured Java 1.1 applet that permits real-
time creation and manipulation of professional charts live on the Web. The
program has a full set of properties, methods and user interface tools (widgets)
for Java developers who wish to create data-driven graphics. Perspective for
Java works in any Java-compatible development environment, browser or
operating system. This product is also designed to support the latest in browser
technology, including Netscape 4.0. Site license fees start at $4900 US with a
minimum of 100 seats. It is available for developer evaluation through a
download on the company's web site.

Contact: Three D Graphics, 1801 Avenue of the Stars, Suite 600, Los Angeles, CA
90067-5908, Phone: 310-553-3313, Fax: 310-788-8975, URL: http://
www.threedgraphics.com/.

MetaCard 2.2

MetaCard Corporation has announced the release of MetaCard 2.2. MetaCard
has a fully functional development environment on all platforms and doesn't
rely on limited-function “players”. The product includes built-in support for
popular audio, video and image formats; no shared libraries, virtual machines,
browsers, installers or other add-ons are required. This results in no DLL or JVM
version conflicts, and high reliability and lower support costs for distributed
applications. MetaCard's entire development environment including graphical
editor, script editor and debugger was built in MetaCard. The free MetaCard
Starter Kit is available now from the MetaCard web site and the FTP site at ftp://
ftp.metacard.com/MetaCard/. Pricing is $995 US for a single user.

Contact: MetaCard Corporation, 4710 Shoup Pl., Boulder, CO 80303, Phone:
303-447-3936, Fax: 303-499-9855, E-mail: info@metacard.com, URL: http://
www.metacard.com/.

EtherPage Version 3.0

Personal Productivity Tools, Inc. has announced the release of EtherPage
Version 3.0 of its EtherPage client/server-to-pager messaging system for Linux.
EtherPage delivers messages from computer networks to wireless devices,
including alphanumeric and two-way pagers and digital cellular phones. One
feature of the product is web-based administration, which allows users to
configure their own system through a web browser. It also includes user-
configurable HTML templates that allow customized interfaces, an enhanced
web interface including user list searching, message status display and support
for thousands of users. Pricing starts at $595.

Contact: Personal Productivity Tools, Inc., 14141 Miranda Road, Los Altos Hills,
CA 94022, Phone: 650-917-7000, Fax: 650-917-7010, E-mail: sales@ppt.com,
URL: http://www.ppt.com/.

D3 Linux v.7.1

Pick Systems, Inc. announces the release of D3 Linux v.7.1 with Red Hat Linux
5.1. Pick's D3 DBMS offers rapid applications design, development and
deployment with scalability from a single client to thousands. D3 also provides
seamless integration with Windows environments. Additional features include
built-in B-trees, FlashBASIC language, Access Query Language with unlimited
views of information, business rule support, trigger, ODBC and SQL

connectivity. The product offers direct APIs to Visual Basic and an HTML
language tool called FlashCONNECT. D3 is available for $300 US per user.

Contact: Pick Systems, 1691 Browning, Irvine, CA 92606, Phone: 714-261-7425,
Fax: 714-250-8187, E-mail: sales@picksys.com, URL: http://www.picksys.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/056/toc056.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	Strictly On-line
	Departments
	Performance Monitoring Tools for Linux
	David Gavin
	What Do We Want to Know?
	Collecting the Data
	What Do We Do with the Data?

	CIDR: A Prescription for Shortness of Address Space
	David A. Bandel
	Background
	IP Basics
	CIDR
	Private Address Groups
	Conclusion

	User Manager Software
	Branden Williams
	The Preparation
	The Report Generator
	The Scalability
	The Solution

	X Window System Administration
	Jay Ts
	X's Client-Server Architecture
	X Administration
	X Configuration Files
	X Server Configuration
	Starting the X Server
	XDM
	Configuring xlogin
	Color Specification
	The User's X Session
	Running xdm Automatically
	Conclusion

	LJ Interviews Linus Torvalds
	Marjorie Richardson

	Building a Web Weather Station
	Chris Howard
	Equipment Installation
	RS-232 Connection and WRL-25
Configuration
	WRL-25 Data Report Format
	Programming for Data Collection
	Programming for Data Display on WWW Page
	Programming for Reliable Periodic FTP
Upload
	Unresolved Issues

	Samba's Encrypted Password Support
	John Blair
	SMB Password Hashes
	The Process of SMB-Encrypted
Authentication
	Using Encrypted Passwords in Samba
	Closing Thoughts

	X-ISP and Maintaining Multiple Account Records
	Chris LeDantec
	How Does it Work?
	Setup and Connecting
	Security Issues
	What's to come?

	Linux in Banking
	Idan Shoham
	What is Internet Banking?
	Functionality
	User Interface
	Security
	Hardware
	Networks
	A Robust Development Environment
	Network Security
	Redundancy and Availability
	An Open-minded Customer
	A Mature Development Environment
	A Robust Production Platform
	An Open Future

	Preventing Spams and Relays
	John Wong
	The smtpd Package
	Compiling and Installing the Package
	Configuring smtpd
	Running smtpd
	Summary

	Mathematica v3.0
	Patrick Galbraith
	What is Mathematica?
	Package Contents
	Installation
	Usage
	More Advanced Computations
	External Functions
	Conclusion

	Happy Hacking Keyboard
	Jeremy Dinsel
	Installation
	Life is a Series of Adjustments
	Happy Hacking
	Disgruntled Gamer
	Technical Support and On-line
Documentation
	In Closing

	Linux Application Development
	Andrew Johnson

	Linux System Administration Handbook
	David A. Bandel

	Learning the Bash Shell, 2nd Edition
	Bob van Poel

	Wireless Networking in Africa
	PhD. Enrique Canessa
	Fulvio Postagna
	Carlo Fonda
	Gabriel O. Ajayi
	Sandro Radicella
	The First Campus Network
	Sticking to Linux
	Campus Wireless Connectivity
	On-Line Services
	Next Steps

	Sharing Pedagogy with Java
	Robert A. Dalrymple
	Sharing the Pedagogy
	Java and the Applets
	Implementation
	Implications
	Conclusion

	Embperl and Databases
	Reuven M. Lerner
	Why Databases?
	Creating our Table
	Inserting Records into the Table
	Creating the Form
	Processing the Form
	Creating an All-Purpose Editor
	Inserting, Updating and Deleting
	Conclusion

	Linux Security for Beginners
	Alex Withers
	TCP/IP Basics
	TCP/IP Security
	Focusing on your System
	Being Aware
	Access Restriction
	setuid
	Tools
	Conclusion

	bc: A Handy Utility
	Alasdair McAndrew
	Basic Usage
	Programming
	Conclusion

	The Wonderful World of Linux 2.2
	Joseph Pranevich
	Chips Galore
	System Busses and Assorted Ilk
	IDE, SCSI and USB—Oh My!
	Ports: Parallel and Serial
	CD-ROMs, Floppies and Removable Media
	Glorious Sounds
	Video4Linux
	Back Me Up, Scotty!
	Joysticks, Mouse and Input Devices
	Bits and Pieces
	File Systems for the World
	Video
	Amateur Radio
	Networking: Ethernet, ISDN and the Lowly
Modem
	Networking II: Under the Hood
	And, Finally

	Linux System Initialization
	David A. Bandel
	BSD vs. System V
	init: Where It All Begins
	inittab Specifics
	Slackware (BSD) inittab
	Sys V inittab (à la Red Hat)
	SysV inittab (à la Debian)
	Emergencies
	Standards
	Summary

	Letters to the Editor
	Various
	Correction
	Author's Correction
	PPP User Interface
	How Do You Spell Stability?
	Article Listings
	Congratulations
	Minor Correction—Issue 53
	How Many Distributions?
	Interview with Charles Andres
	I'm paying for the content, not
advertisements
	About the Inventor Article
	OSDD Article

	Venture Capital Invested in Red Hat
	Dwight Johnson
	Any Bad News?

	Best of Technical Support
	Various
	PLIP or SLIP?
	Time Synchronization
	Netscape Mail
	Changes After Restoring /home
	LILO Question
	VSF Error Messages
	Networking

	New Products
	Amy Kukuk
	Raritan MasterConsole MX4
	VRtuoso
	Debian GNU/Linux ARM
	LinuxCAD
	Perspective for Java
	MetaCard 2.2
	EtherPage Version 3.0
	D3 Linux v.7.1

